• TensorFlow数据读取


    TensorFlow高效读取数据的方法          

    TF Boys (TensorFlow Boys ) 养成记(二): TensorFlow 数据读取                

    Tensorflow从文件读取数据           

    极客学院-数据读取                

    十图详解TensorFlow数据读取机制(附代码)

    http://geek.csdn.net/news/detail/201552

    在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解。确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料。今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下TensorFlow的数据读取机制,文章的最后还会给出实战代码以供参考。

    TensorFlow读取机制图解

    首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示:

    图片描述

    假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需要把它们读取到内存中,然后提供给GPU或是CPU进行计算就可以了。这听起来很容易,但事实远没有那么简单。事实上,我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用时0.9s,那么就意味着每过1s,GPU都会有0.1s无事可做,这就大大降低了运算的效率。

    如何解决这个问题?方法就是将读入数据和计算分别放在两个线程中,将数据读入内存的一个队列,如下图所示:

    图片描述

    读取线程源源不断地将文件系统中的图片读入到一个内存的队列中,而负责计算的是另一个线程,计算需要数据时,直接从内存队列中取就可以了。这样就可以解决GPU因为IO而空闲的问题!

    而在TensorFlow中,为了方便管理,在内存队列前又添加了一层所谓的“文件名队列”。

    为什么要添加这一层文件名队列?我们首先得了解机器学习中的一个概念:epoch。对于一个数据集来讲,运行一个epoch就是将这个数据集中的图片全部计算一遍。如一个数据集中有三张图片A.jpg、B.jpg、C.jpg,那么跑一个epoch就是指对A、B、C三张图片都计算了一遍。两个epoch就是指先对A、B、C各计算一遍,然后再全部计算一遍,也就是说每张图片都计算了两遍。

    TensorFlow使用文件名队列+内存队列双队列的形式读入文件,可以很好地管理epoch。下面我们用图片的形式来说明这个机制的运行方式。如下图,还是以数据集A.jpg, B.jpg, C.jpg为例,假定我们要跑一个epoch,那么我们就在文件名队列中把A、B、C各放入一次,并在之后标注队列结束。

    图片描述

    程序运行后,内存队列首先读入A(此时A从文件名队列中出队):

    图片描述

    再依次读入B和C:

    图片描述

    图片描述

    此时,如果再尝试读入,系统由于检测到了“结束”,就会自动抛出一个异常(OutOfRange)。外部捕捉到这个异常后就可以结束程序了。这就是TensorFlow中读取数据的基本机制。如果我们要跑2个epoch而不是1个epoch,那只要在文件名队列中将A、B、C依次放入两次再标记结束就可以了。

    TensorFlow读取数据机制的对应函数

    如何在TensorFlow中创建上述的两个队列呢?

    对于文件名队列,我们使用tf.train.string_input_producer函数。这个函数需要传入一个文件名list,系统会自动将它转为一个文件名队列。

    此外tf.train.string_input_producer还有两个重要的参数,一个是num_epochs,它就是我们上文中提到的epoch数。另外一个就是shuffle,shuffle是指在一个epoch内文件的顺序是否被打乱。若设置shuffle=False,如下图,每个epoch内,数据还是按照A、B、C的顺序进入文件名队列,这个顺序不会改变:

    图片描述

    如果设置shuffle=True,那么在一个epoch内,数据的前后顺序就会被打乱,如下图所示:

    图片描述

    在TensorFlow中,内存队列不需要我们自己建立,我们只需要使用reader对象从文件名队列中读取数据就可以了,具体实现可以参考下面的实战代码。

    除了tf.train.string_input_producer外,我们还要额外介绍一个函数:tf.train.start_queue_runners。初学者会经常在代码中看到这个函数,但往往很难理解它的用处,在这里,有了上面的铺垫后,我们就可以解释这个函数的作用了。

    在我们使用tf.train.string_input_producer创建文件名队列后,整个系统其实还是处于“停滞状态”的,也就是说,我们文件名并没有真正被加入到队列中(如下图所示)。此时如果我们开始计算,因为内存队列中什么也没有,计算单元就会一直等待,导致整个系统被阻塞。

    图片描述

    而使用tf.train.start_queue_runners之后,才会启动填充队列的线程,这时系统就不再“停滞”。此后计算单元就可以拿到数据并进行计算,整个程序也就跑起来了,这就是函数tf.train.start_queue_runners的用处。

    图片描述

    实战代码

    我们用一个具体的例子感受TensorFlow中的数据读取。如图,假设我们在当前文件夹中已经有A.jpg、B.jpg、C.jpg三张图片,我们希望读取这三张图片5个epoch并且把读取的结果重新存到read文件夹中。

    图片描述

    对应的代码如下:

    # 导入TensorFlow
    import TensorFlow as tf 
    
    # 新建一个Session
    with tf.Session() as sess:
        # 我们要读三幅图片A.jpg, B.jpg, C.jpg
        filename = ['A.jpg', 'B.jpg', 'C.jpg']
        # string_input_producer会产生一个文件名队列
        filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)
        # reader从文件名队列中读数据。对应的方法是reader.read
        reader = tf.WholeFileReader()
        key, value = reader.read(filename_queue)
        # tf.train.string_input_producer定义了一个epoch变量,要对它进行初始化
        tf.local_variables_initializer().run()
        # 使用start_queue_runners之后,才会开始填充队列
        threads = tf.train.start_queue_runners(sess=sess)
        i = 0
        while True:
            i += 1
            # 获取图片数据并保存
            image_data = sess.run(value)
            with open('read/test_%d.jpg' % i, 'wb') as f:
                f.write(image_data)

    我们这里使用filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)建立了一个会跑5个epoch的文件名队列。并使用reader读取,reader每次读取一张图片并保存。

    运行代码后,我们得到就可以看到read文件夹中的图片,正好是按顺序的5个epoch:

    图片描述

    如果我们设置filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)中的shuffle=True,那么在每个epoch内图像就会被打乱,如图所示:

    图片描述

    我们这里只是用三张图片举例,实际应用中一个数据集肯定不止3张图片,不过涉及到的原理都是共通的。

    总结

    这篇文章主要用图解的方式详细介绍了TensorFlow读取数据的机制,最后还给出了对应的实战代码,希望能够给大家学习TensorFlow带来一些实质性的帮助。

  • 相关阅读:
    jquery实现奇偶行赋值不同css值
    Android短信批量插入速度优化的思考与尝试
    Android短信列表的时间显示
    短信优先级及有效期
    模拟器收短信和接电话的方法
    Android:Perferences的使用
    留个脚印
    Android电池电量更新 BatteryService(转)
    Android号码匹配位数修改
    CDMA SMS pdu解码
  • 原文地址:https://www.cnblogs.com/qianblue/p/6971435.html
Copyright © 2020-2023  润新知