• url去重 --布隆过滤器 bloom filter原理及python实现


    https://blog.csdn.net/a1368783069/article/details/52137417

    # -*- encoding: utf-8 -*-
    """This module implements a bloom filter probabilistic data structure and
    an a Scalable Bloom Filter that grows in size as your add more items to it
    without increasing the false positive error_rate.
    
    Requires the bitarray library: http://pypi.python.org/pypi/bitarray/
    
        >>> from pybloom import BloomFilter
        >>> f = BloomFilter(capacity=10000, error_rate=0.001)
        >>> for i in range(0, f.capacity):
        ...     _ = f.add(i)
        ...
        >>> 0 in f
        True
        >>> f.capacity in f
        False
        >>> len(f) <= f.capacity
        True
        >>> abs((len(f) / float(f.capacity)) - 1.0) <= f.error_rate
        True
    
        >>> from pybloom import ScalableBloomFilter
        >>> sbf = ScalableBloomFilter(mode=ScalableBloomFilter.SMALL_SET_GROWTH)
        >>> count = 10000
        >>> for i in range(0, count):
        ...     _ = sbf.add(i)
        ...
        >>> sbf.capacity > count
        True
        >>> len(sbf) <= count
        True
        >>> abs((len(sbf) / float(count)) - 1.0) <= sbf.error_rate
        True
    
    """
    import math
    import hashlib
    from struct import unpack, pack, calcsize
    
    try:
        import bitarray
    except ImportError:
        raise ImportError('pybloom requires bitarray >= 0.3.4')
    
    __version__ = '1.1'
    __author__  = "Jay Baird <jay@mochimedia.com>, Bob Ippolito <bob@redivi.com>,
                   Marius Eriksen <marius@monkey.org>,
                   Alex Brasetvik <alex@brasetvik.com>"
    
    def make_hashfuncs(num_slices, num_bits):
        if num_bits >= (1 << 31):
            fmt_code, chunk_size = 'Q', 8
        elif num_bits >= (1 << 15):
            fmt_code, chunk_size = 'I', 4
        else:
            fmt_code, chunk_size = 'H', 2
        total_hash_bits = 8 * num_slices * chunk_size
        if total_hash_bits > 384:
            hashfn = hashlib.sha512
        elif total_hash_bits > 256:
            hashfn = hashlib.sha384
        elif total_hash_bits > 160:
            hashfn = hashlib.sha256
        elif total_hash_bits > 128:
            hashfn = hashlib.sha1
        else:
            hashfn = hashlib.md5
        fmt = fmt_code * (hashfn().digest_size // chunk_size)
        num_salts, extra = divmod(num_slices, len(fmt))
        if extra:
            num_salts += 1
        salts = [hashfn(hashfn(pack('I', i)).digest()) for i in range(num_salts)]
        def _make_hashfuncs(key):
            #if isinstance(key, unicode):
            #    key = key.encode('utf-8')
            #else:
            #    key = str(key)
            key = str(key).encode("utf-8")
            rval = []
            for salt in salts:
                h = salt.copy()
                h.update(key)
                rval.extend(uint % num_bits for uint in unpack(fmt, h.digest()))
            del rval[num_slices:]
            return rval
        return _make_hashfuncs
    
    
    class BloomFilter(object):
        FILE_FMT = '<dQQQQ'
    
        def __init__(self, capacity, error_rate=0.001):
            """Implements a space-efficient probabilistic data structure
    
            capacity
                this BloomFilter must be able to store at least *capacity* elements
                while maintaining no more than *error_rate* chance of false
                positives
            error_rate
                the error_rate of the filter returning false positives. This
                determines the filters capacity. Inserting more than capacity
                elements greatly increases the chance of false positives.
    
            >>> b = BloomFilter(capacity=100000, error_rate=0.001)
            >>> b.add("test")
            False
            >>> "test" in b
            True
    
            """
            if not (0 < error_rate < 1):
                raise ValueError("Error_Rate must be between 0 and 1.")
            if not capacity > 0:
                raise ValueError("Capacity must be > 0")
            # given M = num_bits, k = num_slices, p = error_rate, n = capacity
            # solving for m = bits_per_slice
            # n ~= M * ((ln(2) ** 2) / abs(ln(P)))
            # n ~= (k * m) * ((ln(2) ** 2) / abs(ln(P)))
            # m ~= n * abs(ln(P)) / (k * (ln(2) ** 2))
            num_slices = int(math.ceil(math.log(1 / error_rate, 2)))
            # the error_rate constraint assumes a fill rate of 1/2
            # so we double the capacity to simplify the API
            bits_per_slice = int(math.ceil(
                (2 * capacity * abs(math.log(error_rate))) /
                (num_slices * (math.log(2) ** 2))))
            self._setup(error_rate, num_slices, bits_per_slice, capacity, 0)
            self.bitarray = bitarray.bitarray(self.num_bits, endian='little')
            self.bitarray.setall(False)
    
        def _setup(self, error_rate, num_slices, bits_per_slice, capacity, count):
            self.error_rate = error_rate
            self.num_slices = num_slices
            self.bits_per_slice = bits_per_slice
            self.capacity = capacity
            self.num_bits = num_slices * bits_per_slice
            self.count = count
            self.make_hashes = make_hashfuncs(self.num_slices, self.bits_per_slice)
    
        def __contains__(self, key):
            """Tests a key's membership in this bloom filter.
    
            >>> b = BloomFilter(capacity=100)
            >>> b.add("hello")
            False
            >>> "hello" in b
            True
    
            """
            bits_per_slice = self.bits_per_slice
            bitarray = self.bitarray
            if not isinstance(key, list):
                hashes = self.make_hashes(key)
            else:
                hashes = key
            offset = 0
            for k in hashes:
                if not bitarray[offset + k]:
                    return False
                offset += bits_per_slice
            return True
    
        def __len__(self):
            """Return the number of keys stored by this bloom filter."""
            return self.count
    
        def add(self, key, skip_check=False):
            """ Adds a key to this bloom filter. If the key already exists in this
            filter it will return True. Otherwise False.
    
            >>> b = BloomFilter(capacity=100)
            >>> b.add("hello")
            False
            >>> b.add("hello")
            True
    
            """
            bitarray = self.bitarray
            bits_per_slice = self.bits_per_slice
            hashes = self.make_hashes(key)
            if not skip_check and hashes in self:
                return True
            if self.count > self.capacity:
                raise IndexError("BloomFilter is at capacity")
            offset = 0
            for k in hashes:
                self.bitarray[offset + k] = True
                offset += bits_per_slice
            self.count += 1
            return False
    
        def copy(self):
            """Return a copy of this bloom filter.
            """
            new_filter = BloomFilter(self.capacity, self.error_rate)
            new_filter.bitarray = self.bitarray.copy()
            return new_filter
    
        def union(self, other):
            """ Calculates the union of the two underlying bitarrays and returns
            a new bloom filter object."""
            if self.capacity != other.capacity or 
                self.error_rate != other.error_rate:
                raise ValueError("Unioning filters requires both filters to have 
    both the same capacity and error rate")
            new_bloom = self.copy()
            new_bloom.bitarray = new_bloom.bitarray | other.bitarray
            return new_bloom
    
        def __or__(self, other):
            return self.union(other)
    
        def intersection(self, other):
            """ Calculates the union of the two underlying bitarrays and returns
            a new bloom filter object."""
            if self.capacity != other.capacity or 
                self.error_rate != other.error_rate:
                raise ValueError("Intersecting filters requires both filters to 
    have equal capacity and error rate")
            new_bloom = self.copy()
            new_bloom.bitarray = new_bloom.bitarray & other.bitarray
            return new_bloom
    
        def __and__(self, other):
            return self.intersection(other)
    
        def tofile(self, f):
            """Write the bloom filter to file object `f'. Underlying bits
            are written as machine values. This is much more space
            efficient than pickling the object."""
            f.write(pack(self.FILE_FMT, self.error_rate, self.num_slices,
                         self.bits_per_slice, self.capacity, self.count))
            self.bitarray.tofile(f)
    
        @classmethod
        def fromfile(cls, f, n=-1):
            """Read a bloom filter from file-object `f' serialized with
            ``BloomFilter.tofile''. If `n' > 0 read only so many bytes."""
            headerlen = calcsize(cls.FILE_FMT)
    
            if 0 < n < headerlen:
                raise ValueError('n too small!')
    
            filter = cls(1)  # Bogus instantiation, we will `_setup'.
            filter._setup(*unpack(cls.FILE_FMT, f.read(headerlen)))
            filter.bitarray = bitarray.bitarray(endian='little')
            if n > 0:
                filter.bitarray.fromfile(f, n - headerlen)
            else:
                filter.bitarray.fromfile(f)
            if filter.num_bits != filter.bitarray.length() and 
                   (filter.num_bits + (8 - filter.num_bits % 8)
                    != filter.bitarray.length()):
                raise ValueError('Bit length mismatch!')
    
            return filter
    
        def __getstate__(self):
            d = self.__dict__.copy()
            del d['make_hashes']
            return d
    
        def __setstate__(self, d):
            self.__dict__.update(d)
            self.make_hashes = make_hashfuncs(self.num_slices, self.bits_per_slice)
    
    class ScalableBloomFilter(object):
        SMALL_SET_GROWTH = 2 # slower, but takes up less memory
        LARGE_SET_GROWTH = 4 # faster, but takes up more memory faster
        FILE_FMT = '<idQd'
    
        def __init__(self, initial_capacity=100, error_rate=0.001,
                     mode=SMALL_SET_GROWTH):
            """Implements a space-efficient probabilistic data structure that
            grows as more items are added while maintaining a steady false
            positive rate
    
            initial_capacity
                the initial capacity of the filter
            error_rate
                the error_rate of the filter returning false positives. This
                determines the filters capacity. Going over capacity greatly
                increases the chance of false positives.
            mode
                can be either ScalableBloomFilter.SMALL_SET_GROWTH or
                ScalableBloomFilter.LARGE_SET_GROWTH. SMALL_SET_GROWTH is slower
                but uses less memory. LARGE_SET_GROWTH is faster but consumes
                memory faster.
    
            >>> b = ScalableBloomFilter(initial_capacity=512, error_rate=0.001, 
                                        mode=ScalableBloomFilter.SMALL_SET_GROWTH)
            >>> b.add("test")
            False
            >>> "test" in b
            True
            >>> unicode_string = u'¡'
            >>> b.add(unicode_string)
            False
            >>> unicode_string in b
            True
            """
            if not error_rate or error_rate < 0:
                raise ValueError("Error_Rate must be a decimal less than 0.")
            self._setup(mode, 0.9, initial_capacity, error_rate)
            self.filters = []
    
        def _setup(self, mode, ratio, initial_capacity, error_rate):
            self.scale = mode
            self.ratio = ratio
            self.initial_capacity = initial_capacity
            self.error_rate = error_rate
    
        def __contains__(self, key):
            """Tests a key's membership in this bloom filter.
    
            >>> b = ScalableBloomFilter(initial_capacity=100, error_rate=0.001, 
                                        mode=ScalableBloomFilter.SMALL_SET_GROWTH)
            >>> b.add("hello")
            False
            >>> "hello" in b
            True
    
            """
            for f in reversed(self.filters):
                if key in f:
                    return True
            return False
    
        def add(self, key):
            """Adds a key to this bloom filter.
            If the key already exists in this filter it will return True.
            Otherwise False.
    
            >>> b = ScalableBloomFilter(initial_capacity=100, error_rate=0.001, 
                                        mode=ScalableBloomFilter.SMALL_SET_GROWTH)
            >>> b.add("hello")
            False
            >>> b.add("hello")
            True
    
            """
            if key in self:
                return True
            filter = self.filters[-1] if self.filters else None
            if filter is None or filter.count >= filter.capacity:
                num_filters = len(self.filters)
                filter = BloomFilter(
                    capacity=self.initial_capacity * (self.scale ** num_filters),
                    error_rate=self.error_rate * (self.ratio ** num_filters))
                self.filters.append(filter)
            filter.add(key, skip_check=True)
            return False
    
        @property
        def capacity(self):
            """Returns the total capacity for all filters in this SBF"""
            return sum([f.capacity for f in self.filters])
    
        @property
        def count(self):
            return len(self)
    
        def tofile(self, f):
            """Serialize this ScalableBloomFilter into the file-object
            `f'."""
            f.write(pack(self.FILE_FMT, self.scale, self.ratio,
                         self.initial_capacity, self.error_rate))
    
            # Write #-of-filters
            f.write(pack('<l', len(self.filters)))
    
            if len(self.filters) > 0:
                # Then each filter directly, with a header describing
                # their lengths.
                headerpos = f.tell()
                headerfmt = '<' + 'Q'*(len(self.filters))
                f.write('.' * calcsize(headerfmt))
                filter_sizes = []
                for filter in self.filters:
                    begin = f.tell()
                    filter.tofile(f)
                    filter_sizes.append(f.tell() - begin)
    
                f.seek(headerpos)
                f.write(pack(headerfmt, *filter_sizes))
    
        @classmethod
        def fromfile(cls, f):
            """Deserialize the ScalableBloomFilter in file object `f'."""
            filter = cls()
            filter._setup(*unpack(cls.FILE_FMT, f.read(calcsize(cls.FILE_FMT))))
            nfilters, = unpack('<l', f.read(calcsize('<l')))
            if nfilters > 0:
                header_fmt = '<' + 'Q'*nfilters
                bytes = f.read(calcsize(header_fmt))
                filter_lengths = unpack(header_fmt, bytes)
                for fl in filter_lengths:
                    filter.filters.append(BloomFilter.fromfile(f, fl))
            else:
                filter.filters = []
    
            return filter
    
        def __len__(self):
            """Returns the total number of elements stored in this SBF"""
            return sum([f.count for f in self.filters])
    
    
    if __name__ == "__main__":
        import doctest
        doctest.testmod()
    

      

  • 相关阅读:
    部署prerender服务器
    Bzoj4727--Poi2017Turysta
    Bzoj4818--Sdoi2017序列计数
    Heoi2014系列题解
    scoi2017酱油记
    Burnside引理与Pólya定理
    2017省选前北京集训总结
    奥妙重重的随机发生器
    ???--???Insection is not allowed
    反演
  • 原文地址:https://www.cnblogs.com/pythonClub/p/10116516.html
Copyright © 2020-2023  润新知