• LeNet网络实现cifar10数据集分类


    import  tensorflow as tf
    import numpy as np
    import os
    from matplotlib import pyplot as plt
    from tensorflow.keras.layers import Dense,Flatten,Activation,Conv2D,MaxPool2D
    from tensorflow.keras import Model
    
    
    cifar10=tf.keras.datasets.cifar10
    (x_train,y_train),(x_test,y_test)=cifar10.load_data()
    x_train=x_train/255.
    x_test=x_test/255.
    
    class LeNet5(Model):
        def __init__(self):
            super(LeNet5,self).__init__()
            self.c1=Conv2D(filters=6,kernel_size=(5,5),strides=1,padding='valid')
            self.a1=Activation('sigmoid')
            self.p1=MaxPool2D(pool_size=(2,2),strides=2,padding='valid')
    
            self.c2=Conv2D(filters=16,kernel_size=(5,5),strides=1,padding='valid')
            self.a2=Activation('sigmoid')
            self.p2=MaxPool2D(pool_size=(2,2),strides=2,padding='valid')
    
            self.flatten=Flatten()
            self.f1=Dense(120,activation='sigmoid')
            self.f2=Dense(84, activation='sigmoid')
            self.f3=Dense(10, activation='softmax')
    
        def call(self,x):
            x = self.c1(x)
            x = self.a1(x)
            x = self.p1(x)
    
            x = self.c2(x)
            x = self.a2(x)
            x = self.p2(x)
    
            x = self.flatten(x)
            x = self.f1(x)
            x = self.f2(x)
            y= self.f3(x)
            return y
    
    model=LeNet5()
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    checkpoint_save_path='./checkpoint/LeNet.ckpt'
    
    if os.path.exists(checkpoint_save_path+'.index'):
        print('-----------load model-----------')
        model.load_weights(checkpoint_save_path)
    
    cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                   save_best_only=True,
                                                   save_weights_only=True)
    
    history=model.fit(x_train,y_train,batch_size=32,epochs=5,validation_data=(x_test,y_test),validation_freq=1,
                      callbacks=[cp_callback])
    
    model.summary()
    
    file=open('./LeNet_weights.txt','w')
    
    for v in model.trainable_variables:
        file.write(str(v.name)+'
    ')
        file.write(str(v.shape) + '
    ')
        file.write(str(v.numpy()) + '
    ')
    file.close()
    
    #############可视化图像#############
    acc=history.history['sparse_categorical_accuracy']
    val_acc=history.history['val_sparse_categorical_accuracy']
    loss=history.history['loss']
    val_loss=history.history['val_loss']
    
    plt.subplot(1,2,1)
    plt.plot(loss,label='loss')
    plt.plot(val_loss,label='val_loss')
    plt.title('Training and Validation Loss')
    plt.legend()
    
    plt.subplot(1,2,2)
    plt.plot(acc,label='sparse_categorical_accuracy')
    plt.plot(val_acc,label='val_sparse_categorical_accuracy')
    plt.title('Training and Validation Accuracy')
    plt.legend()
    
    plt.show()
  • 相关阅读:
    一些大佬博客里的个签
    后缀子串排序
    PAT 1024 Palindromic Number[难]
    dp训练
    字符串最长子串匹配dp矩阵[转载]
    最短路径并查集+Floyd[转载]
    素数牛客网[求大数内所有素数]
    sql server 的规格参数,限制等 (zz)
    sql server varchar(max), NVARCHAR(MAX), VARBINARY(MAX) (zz)
    Oracle Data Types NVARCHAR2 (zz)
  • 原文地址:https://www.cnblogs.com/python2/p/13587024.html
Copyright © 2020-2023  润新知