import tensorflow as tf import numpy as np import os from matplotlib import pyplot as plt from tensorflow.keras.layers import Dense,Flatten,Activation,Conv2D,MaxPool2D from tensorflow.keras import Model cifar10=tf.keras.datasets.cifar10 (x_train,y_train),(x_test,y_test)=cifar10.load_data() x_train=x_train/255. x_test=x_test/255. class LeNet5(Model): def __init__(self): super(LeNet5,self).__init__() self.c1=Conv2D(filters=6,kernel_size=(5,5),strides=1,padding='valid') self.a1=Activation('sigmoid') self.p1=MaxPool2D(pool_size=(2,2),strides=2,padding='valid') self.c2=Conv2D(filters=16,kernel_size=(5,5),strides=1,padding='valid') self.a2=Activation('sigmoid') self.p2=MaxPool2D(pool_size=(2,2),strides=2,padding='valid') self.flatten=Flatten() self.f1=Dense(120,activation='sigmoid') self.f2=Dense(84, activation='sigmoid') self.f3=Dense(10, activation='softmax') def call(self,x): x = self.c1(x) x = self.a1(x) x = self.p1(x) x = self.c2(x) x = self.a2(x) x = self.p2(x) x = self.flatten(x) x = self.f1(x) x = self.f2(x) y= self.f3(x) return y model=LeNet5() model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['sparse_categorical_accuracy']) checkpoint_save_path='./checkpoint/LeNet.ckpt' if os.path.exists(checkpoint_save_path+'.index'): print('-----------load model-----------') model.load_weights(checkpoint_save_path) cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path, save_best_only=True, save_weights_only=True) history=model.fit(x_train,y_train,batch_size=32,epochs=5,validation_data=(x_test,y_test),validation_freq=1, callbacks=[cp_callback]) model.summary() file=open('./LeNet_weights.txt','w') for v in model.trainable_variables: file.write(str(v.name)+' ') file.write(str(v.shape) + ' ') file.write(str(v.numpy()) + ' ') file.close() #############可视化图像############# acc=history.history['sparse_categorical_accuracy'] val_acc=history.history['val_sparse_categorical_accuracy'] loss=history.history['loss'] val_loss=history.history['val_loss'] plt.subplot(1,2,1) plt.plot(loss,label='loss') plt.plot(val_loss,label='val_loss') plt.title('Training and Validation Loss') plt.legend() plt.subplot(1,2,2) plt.plot(acc,label='sparse_categorical_accuracy') plt.plot(val_acc,label='val_sparse_categorical_accuracy') plt.title('Training and Validation Accuracy') plt.legend() plt.show()