为了使训练模型在测试数据上有更好的效果,可以引入一种新的方法:滑动平均模型。通过维护一个影子变量,来代替最终训练参数,进行训练模型的验证。
在tensorflow中提供了ExponentialMovingAverage来实行滑动平均模型,模型会维护一个影子变量,其计算公式为:
shadow_variable = decay * shadow_variable + (1 - decay) * variable
当训练模型时,维护训练参数的滑动平均值是有好处的。相比较最终训练值,验证时使用滑动平均值有时能产生更好的结果。
apply()函数方法会添加一个影子拷贝到训练变量中,然后在他们影子副本上维护训练参数的滑动平均值计算操作。这个操作通常在一轮训练完之后进行。
average()和average_name()函数提供了访问影子变量和他们名字的方法。这在构建一个评估模型或者从checkpoint文件中重载模型时非常有用。在验证时,可以帮助使用滑动平均值替换最后训练值。要使用这个模型,需要有3个步骤:
1、 创建一个滑动平均模型对象
step = tf.Variable(initial_value=0,dtype=tf.float32,trainable=False)
ema = tf.train.ExponentialMovingAverage(decay=0.99,num_updates=step)
decay就是前面公式里面的衰减因此,合理的decay值可以是接近1.0,例如0.999,0.9999等多个9中变换。num_updates为一个可选的参数,decay值由如下公式决定:
min(decay, (1 + num_updates) / (10 + num_updates))。目的是使影子变量在刚开始训练的时候,更新的更快。 因此num_updates通常可以传入一个递增的训练步数变量。
2、 加入训练参数列表到模型中进行维护
新建两个训练参数,并将其加入滑动平均模型对象中维护,apply()函数接受一个参数列表。
var0 = tf.Variable(initial_value=0,dtype=tf.float32,trainable=False) var1 = tf.Variable(initial_value=0,dtype=tf.float32,trainable=False) maintain_averages_op = ema.apply([var0,var1])
3、 训练完成以后,更新滑动平均模型中各个影子变量的值
sess.run(maintain_averages_op) print(sess.run([var0,ema.average(var0),var1,ema.average(var1)])) # 输出[10,4.555,10,9.01]
完整的滑动平均模型测试样例如下:
# 导入tensorflow库 import tensorflow as tf # 创建一个滑动平均模型对象 step = tf.Variable(initial_value=0,dtype=tf.float32,trainable=False) ema = tf.train.ExponentialMovingAverage(decay=0.99,num_updates=step) # 创建两个训练参数,并将其加入滑动平均模型对象中,对象会为这两个训练参数创建两个影子变量 # 影子变量shadow_variable = decay * shadow_variable + (1 - decay) * variable # 如果滑动平均模型对象创建时,指定了num_updates,则decay = min{decay,(1 + num_updates)/(10 + num_updates)} var0 = tf.Variable(initial_value=0,dtype=tf.float32,trainable=False) var1 = tf.Variable(initial_value=0,dtype=tf.float32,trainable=False) maintain_averages_op = ema.apply([var0,var1]) # 测试更新影子变量值 with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) # 第一次初始滑动平均 sess.run(maintain_averages_op) # decay = min(0.99,0.1) = 0.1 # 初始时: # shadow_variable_var0 = var0 = 0 # shadow_variable_var1 = var1 = 0 print(sess.run([var0,ema.average(var0),var1,ema.average(var1)])) # 第二次更新滑动平均 sess.run(tf.assign(var0,5.0)) sess.run(tf.assign(var1, 10.0)) # decay = min(0.99,(1+0)/(10+0)) = 0.1 # shadow_variable_var0 = decay * shadow_variable + (1 - decay) * variable = 0.1*0 + (1-0.1)*5 = 4.5 # shadow_variable_var1 = 9.0 sess.run(maintain_averages_op) print(sess.run([var0,ema.average(var0),var1,ema.average(var1)])) # 输出[5.0,4.5,10,9.0] # 第三次更新滑动平均 sess.run(tf.assign(step,10000)) sess.run(tf.assign(var0,10)) # decay = min(0.99,(1+10000)/(10+10000)) = 0.99 # shadow_variable_var0 = decay * shadow_variable + (1 - decay) * variable = 0.99*4.5 + (1-0.99)*10 = 4.555 # shadow_variable_var1 = 0.99*9.0+(1-0.99)*10 = 9.01 sess.run(maintain_averages_op) print(sess.run([var0,ema.average(var0),var1,ema.average(var1)])) # 输出[10,4.555,10,9.01] # 第四次更新滑动平均 # decay = min(0.99,(1+10000)/(10+10000)) = 0.99 # shadow_variable_var0 = decay * shadow_variable + (1 - decay) * variable = 0.99*4.555 + (1-0.99)*10 = 4.60945 # shadow_variable_var1 = 0.99*9.01+(1-0.99)*10 = 9.0199 sess.run(maintain_averages_op) print(sess.run([var0, ema.average(var0), var1, ema.average(var1)])) # 输出[10,4.60945,10,9.0199]
下面是tensorflow官方给出的两种滑动模型使用场景:
Example usage when creating a training model: ```python # Create variables. var0 = tf.Variable(...) var1 = tf.Variable(...) # ... use the variables to build a training model... ... # Create an op that applies the optimizer. This is what we usually # would use as a training op. opt_op = opt.minimize(my_loss, [var0, var1]) # Create an ExponentialMovingAverage object ema = tf.train.ExponentialMovingAverage(decay=0.9999) with tf.control_dependencies([opt_op]): # Create the shadow variables, and add ops to maintain moving averages # of var0 and var1. This also creates an op that will update the moving # averages after each training step. This is what we will use in place # of the usual training op. training_op = ema.apply([var0, var1]) ...train the model by running training_op... ``` There are two ways to use the moving averages for evaluations: * Build a model that uses the shadow variables instead of the variables. For this, use the `average()` method which returns the shadow variable for a given variable. * Build a model normally but load the checkpoint files to evaluate by using the shadow variable names. For this use the `average_name()` method. See the @{tf.train.Saver} for more information on restoring saved variables. Example of restoring the shadow variable values: ```python # Create a Saver that loads variables from their saved shadow values. shadow_var0_name = ema.average_name(var0) shadow_var1_name = ema.average_name(var1) saver = tf.train.Saver({shadow_var0_name: var0, shadow_var1_name: var1}) saver.restore(...checkpoint filename...) # var0 and var1 now hold the moving average values ``` """