• 平差笔记


    秩:一个矩阵最大线性无关列,或者最大线性无关行;

    *最大线性无关行=最大线性无关列

    例如:Amxn

    求秩函数:R();

    对于Amxn , 对于AmxnXnx1=0,最小二乘解ATAX = ATb ,令Nnxn = ATA,Nnxn Xnx1 = W nx1

    要使得X有唯一解,那么R(N)=n,也就是N要满秩

    因为:如果N各列线性相关,就可能有很多组X,能组合出W列向量;

    R(A) = R(ATA),证明:

    AX=0,X的所有解称为N(A),X能构筑的空间的维度=n-R(A);

    X作为一个列向量,与A的各个行向量垂直,因此X构筑的空间⊥A的行空间

     ATAX=0,左右乘XT,XTATAX=0(相当于同一向量求点积),此结果是向量||AX||2=0

    因此:AX和ATAX中,两个X是同解,并且对于ATAX=0,X能构筑的空间的维度=n-R(ATA);

    因此R(A) = R(ATA)

    由于R(A) = R(N)=n,因此:A各列必须线性无关,才可能得到AX=b最小二乘唯一解;

    而对于加权最小二乘ATPAX=ATPB,也是一样的,因为P是对称的


     如果A的各列不是线性无关,也就是没有起算数据,从而导致R(N)=R(A)<min(m,n),那么:X就不再唯一;

    为了方便,将Nnxn Xnx1 = W nx1 视为另一个形式的AnxnX=B;

    现在Anxn不满秩,因此A-1不存在,X的解不唯一;


    误差传播

    例一:全站仪的测方向值误差为a ,角度β = a1 - a, 那么 :β方差 = KDaaKT

     

    K是β表达式中的系数矩阵,Daa是两个观测量的协方差阵,实际上,最底层的观测值应该是线性无关的,因此非对角线上的元素的协方差为0

    例二:

    泰勒展开,使得其线性化:

     

     可见,非底层的观测值其协方差非对角线,不一定是都为0的,也就是观测值相关

    例三:

     (其实三维坐标可以以底层观测值来表示,这里只是显示误差传播的过程)

    例四:

    在最小二乘法当中,有加权最小二乘法,观测模型:

    L = BX + d(例如:L为真边长,X为真坐标,d为方程常数项)

    假设:

    X = X0 + x

    L = L0 + V 

    L0 为观测值,X0为坐标近似值,x为坐标改正数,l为观测值改正数

    为了使得:

    误差:

    V = L - L0

       = B(X0 + x) + d - L0

       = Bx -  (BX0 + d  - L0)

       = Bx - l

    BX+ d  就是观测值的近似值,因此 l 就是近似值与观测值之差

    那么,平差的目标,是为了使得向量V的长度最小,也就是 |V|2= v1v1 + v2v2 + .....最小

    但是,并不是每个Vn 的可信性都是一样的,因为每个L0的可信度不一样,就要加权,变成要求|V|2= p1v1v1 + p2v2v2 + .....最小,也就是VTPV最小

    可信度越高,p越大,可见,使用Li的方差倒数,方差越小,权越大,是一个不错的选择;

    (注意,当L0相互不独立时,还要加上p12V1V2 + p13V1V3 + ....)

    按照上面的推论,也就是:

     也就是解方程组:

    d(VTpV)/dx1 = 0

    d(VTpV)/dx2 = 0

    上面方程组可以写为:

    BTPV = BTPBx - BTPl = 0 

    也就是解 BTPBx = BTPl


    用纯粹线性代数的概念,假如

  • 相关阅读:
    Device eth0 does not seem to be present, delaying initialization(解决克隆CentOS6.3虚拟机后网卡设备无法启动问题)
    CI整合Smarty
    修改crontab默认的编辑器
    添加数据之后不跳页面显示一个漂亮的提示信息(非ajax提交数据)
    jsp连接mysql数据库
    PHP使用CURL详解
    内、外部号码范围配置
    更改SAP的字段翻译
    SAP 应用服务负载均衡的实现
    SAP中禁止特定用户更改密码
  • 原文地址:https://www.cnblogs.com/pylblog/p/11492769.html
Copyright © 2020-2023  润新知