• hdu 5901 count prime & code vs 3223 素数密度


    hdu5901题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5901

    code vs 3223题目链接:http://codevs.cn/problem/3223/

    思路:主要是用了一个Meisell-Lehmer算法模板,复杂度O(n^(2/3))。讲道理,我不是很懂(瞎说什么大实话....),下面输出请自己改

      1 #include<bits/stdc++.h>  
      2   
      3 using namespace std;  
      4   
      5 typedef long long LL;  
      6 const LL N = 5e6 + 2;  
      7 bool np[N];  
      8 int prime[N], pi[N];  
      9   
     10 int getprime() {  
     11     int cnt = 0;  
     12     np[0] = np[1] = true;  
     13     pi[0] = pi[1] = 0;  
     14     for(int i = 2; i < N; ++i) {  
     15         if(!np[i]) prime[++cnt] = i;  
     16         pi[i] = cnt;  
     17         for(int j = 1; j <= cnt && i * prime[j] < N; ++j) {  
     18             np[i * prime[j]] = true;  
     19             if(i % prime[j] == 0)   break;  
     20         }  
     21     }  
     22     return cnt;  
     23 }  
     24 const int M = 7;  
     25 const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;  
     26 int phi[PM + 1][M + 1], sz[M + 1];  
     27 void init() {  
     28     getprime();  
     29     sz[0] = 1;  
     30     for(int i = 0; i <= PM; ++i)  phi[i][0] = i;  
     31     for(int i = 1; i <= M; ++i) {  
     32         sz[i] = prime[i] * sz[i - 1];  
     33         for(int j = 1; j <= PM; ++j) {  
     34             phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];  
     35         }  
     36     }  
     37 }  
     38 int sqrt2(LL x) {  
     39     LL r = (LL)sqrt(x - 0.1);  
     40     while(r * r <= x)   ++r;  
     41     return int(r - 1);  
     42 }  
     43 int sqrt3(LL x) {  
     44     LL r = (LL)cbrt(x - 0.1);  
     45     while(r * r * r <= x)   ++r;  
     46     return int(r - 1);  
     47 }  
     48 LL getphi(LL x, int s) {  
     49     if(s == 0)  return x;  
     50     if(s <= M)  return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];  
     51     if(x <= prime[s]*prime[s])   return pi[x] - s + 1;  
     52     if(x <= prime[s]*prime[s]*prime[s] && x < N) {  
     53         int s2x = pi[sqrt2(x)];  
     54         LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;  
     55         for(int i = s + 1; i <= s2x; ++i) {  
     56             ans += pi[x / prime[i]];  
     57         }  
     58         return ans;  
     59     }  
     60     return getphi(x, s - 1) - getphi(x / prime[s], s - 1);  
     61 }  
     62 LL getpi(LL x) {  
     63     if(x < N)   return pi[x];  
     64     LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;  
     65     for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) {  
     66         ans -= getpi(x / prime[i]) - i + 1;  
     67     }  
     68     return ans;  
     69 }  
     70 LL lehmer_pi(LL x) {  
     71     if(x < N)   return pi[x];  
     72     int a = (int)lehmer_pi(sqrt2(sqrt2(x)));  
     73     int b = (int)lehmer_pi(sqrt2(x));  
     74     int c = (int)lehmer_pi(sqrt3(x));  
     75     LL sum = getphi(x, a) + LL(b + a - 2) * (b - a + 1) / 2;  
     76     for (int i = a + 1; i <= b; i++) {  
     77         LL w = x / prime[i];  
     78         sum -= lehmer_pi(w);  
     79         if (i > c) continue;  
     80         LL lim = lehmer_pi(sqrt2(w));  
     81         for (int j = i; j <= lim; j++) {  
     82             sum -= lehmer_pi(w / prime[j]) - (j - 1);  
     83         }  
     84     }  
     85     return sum;  
     86 }  
     87   
     88 int main() {  
     89     init();  
     90     LL n,m;  
     91     while(cin >> m >> n) 
     92     { 
     93         cout<<prime[n]<<endl; //输出第n个素数  
     94         cout<<pi[m]<<endl;         //输出该数是第几个素数 
     95         cout << lehmer_pi(n) <<endl;    //输出区间[1,n]包含的素数 
     96         cout << lehmer_pi(n)-lehmer_pi(m) << endl;    //判断区间(m,n]包含的素数 
     97   
     98             cout << lehmer_pi(n)-lehmer_pi(m-1) << endl;   //输出区间[m,n]包含的素数个数 
     99        
    101      
    102     }  
    103     return 0;  
    104 } 

     还有一个O(n^(4/3))算法,我又不懂,菜的抠脚....

     1 #include <bits/stdc++.h>
     2 #define ll long long
     3 using namespace std;
     4 ll f[340000],g[340000],n;
     5 void init(){
     6     ll i,j,m;
     7     for(m=1;m*m<=n;++m)f[m]=n/m-1;
     8     for(i=1;i<=m;++i)g[i]=i-1;
     9     for(i=2;i<=m;++i){
    10         if(g[i]==g[i-1])continue;
    11         for(j=1;j<=min(m-1,n/i/i);++j){
    12             if(i*j<m)f[j]-=f[i*j]-g[i-1];
    13             else f[j]-=g[n/i/j]-g[i-1];
    14         }
    15         for(j=m;j>=i*i;--j)g[j]-=g[j/i]-g[i-1];
    16     }
    17 }
    18 int main(){
    19     while(scanf("%I64d",&n)!=EOF){
    20         init();
    21         cout<<f[1]<<endl;
    22     }
    23     return 0;
    24 }
  • 相关阅读:
    文件上传
    data.push({name:'a',value:'a'});
    es数据迁移脚本(python)
    es修改数据类型
    SqlServer应用程序的高级Sql注入
    ASP.NET中如何防范SQL注入式攻击
    AJAX.NET框架构建Lookup服务器控件
    asp.net 读写 XML 小结
    Global.asax 文件
    ajaxpro.2.dll 简单应用
  • 原文地址:https://www.cnblogs.com/pter/p/5889426.html
Copyright © 2020-2023  润新知