• loj6402. yww 与校门外的树


    题意

    略。(语文太差)

    题解

    首先一个结论:随机一个([0, 1])之间的实数序列,只用到各个位置相互之间的大小关系,每种关系出现的概率等同于随机一个([1, n])的排列。
    原因是出现某些位置值相同的概率是无穷小,并且只有有限种情况出现相同的值,因此可以忽略。
    然后在草稿纸上画一画,就知道如果(p_1, p_2, ldots, p_x in [n - x + 1, n]),那么(1, 2, ldots, x)(x + 1, x + 2, ldots, n)之间必然没有边。
    考虑dp。但是如果直接dp答案会有点难,所以设(f_n)表示长度为(n)的序列,不存在一个(x),使得(1, 2, ldots, x)(x + 1, x + 2, ldots, n)没有边的不同序列数,并规定(f_0 = 1)
    考虑补集转化,有

    [f_n = n! - sum_{i = 1} ^ {n - 1} f_{n - i} i! \ 2n! = sum_{i = 0} ^ {n} f_{n - i} i! + [n = 0] \ ]

    考虑其生成函数

    [F(x) = sum_{i geq 0} f_i x ^ i ]

    与一个辅助生成函数

    [G(x) = sum_{i geq 0} i! x ^ i ]

    [2G(x) = G(x)F(x) + 1 \ F(x) = frac{2G(x) - 1}{G(x)} \ ]

    这可以用多项式求逆求出。
    考虑答案。设(H(x) = sum_{i geq 0} i f_i x ^ i)(此时(f_i)已求出),则有

    [ans = [x ^ n] sum_{k geq 0} H(X) ^ k = [x ^ n] frac{1}{1 - H(x)} ]

    再做一次多项式求逆即可。
    复杂度(mathcal O(n log n))

    #pragma GCC optimize(2)
    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    typedef vector <int> poly;
    const int N = 1 << 20, mod = 998244353, G = 3;
    const ll infty = 1ll * mod * mod;
    int power (int a, int b) {
    	int ret = 1;
    	if (b < 0) {
    		b += mod - 1;
    	}
    	for ( ; b; b >>= 1, a = 1ll * a * a % mod) {
    		if (b & 1) {
    			ret = 1ll * ret * a % mod;
    		}
    	}
    	return ret;
    }
    namespace {
    	void printp (poly a) {
    		if (!a.size()) {
    			return;
    		}
    		printf("%d", a[0]);
    		for (int i = 1; i < (int)a.size(); ++i) {
    			printf(" %d", a[i]);
    		}
    		putchar('
    ');
    	}
    	int adjust (int n) {
    		int ret = 1;
    		for ( ; ret < n; ret <<= 1);
    		return ret;
    	}
    	poly trans (int n, int *a) {
    		int m = adjust(n);
    		poly ret; ret.resize(m, 0);
    		for (int i = 0; i < n; ++i) {
    			ret[i] = a[i];
    		}
    		return ret;
    	}
    	void dnt (int n, poly &_a) {
    		static int rev[N], a[N], wi[N];
    		for (int i = 0; i < n; ++i) {
    			rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? n >> 1 : 0);
    			a[i] = _a[rev[i]];
    		}
    		for (int l = 2, _w; l <= n; l <<= 1) {
    			_w = power(G, (mod - 1) / l), wi[l >> 1] = 1;
    			for (int i = (l >> 1) + 1; i < l; ++i) {
    				wi[i] = 1ll * wi[i - 1] * _w % mod;
    			}
    		}
    		for (int l = 2, m = 1; l <= n; m = l, l <<= 1) {
    			for (int i = 0; i < n; i += l) {
    				int *u = a + i, *v = a + i + m, *w = wi + m;
    				for (int j = 0, x, y; j < m; ++u, ++v, ++w, ++j) {
    					x = *u, y = 1ll * (*v) * (*w) % mod;
    					*u = (x + y) % mod, *v = (x - y + mod) % mod;
    				}
    			}
    		}
    		for (int i = 0; i < n; ++i) {
    			_a[i] = a[i];
    		}
    	}
    	void idnt (int n, poly &_a) {
    		static int rev[N], a[N], wi[N];
    		for (int i = 0; i < n; ++i) {
    			rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? n >> 1 : 0);
    			a[i] = _a[rev[i]];
    		}
    		for (int l = 2, _w; l <= n; l <<= 1) {
    			_w = power(G, mod - 1 - (mod - 1) / l), wi[l >> 1] = 1;
    			for (int i = (l >> 1) + 1; i < l; ++i) {
    				wi[i] = 1ll * wi[i - 1] * _w % mod;
    			}
    		}
    		for (int l = 2, m = 1; l <= n; m = l, l <<= 1) {
    			for (int i = 0; i < n; i += l) {
    				int *u = a + i, *v = a + i + m, *w = wi + m;
    				for (int j = 0, x, y; j < m; ++u, ++v, ++w, ++j) {
    					x = *u, y = 1ll * (*v) * (*w) % mod;
    					*u = (x + y) % mod, *v = (x - y + mod) % mod;
    				}
    			}
    		}
    		int invn = power(n, mod - 2);
    		for (int i = 0; i < n; ++i) {
    			_a[i] = 1ll * a[i] * invn % mod;
    		}
    	}
    	poly conv (int n, poly a, poly b, int f = 0) {
    		a.resize(n, 0), b.resize(n, 0);
    		n <<= 1, a.resize(n, 0), b.resize(n, 0);
    		dnt(n, a), dnt(n, b);
    		for (int i = 0; i < n; ++i) {
    			a[i] = 1ll * a[i] * b[i] % mod;
    			if (f) {
    				a[i] = 1ll * a[i] * b[i] % mod;
    			}
    		}
    		idnt(n, a);
    		return a;
    	}
    	poly plu (int n, poly a, poly b) {
    		for (int i = 0; i < n; ++i) {
    			if ((a[i] += b[i]) >= mod) {
    				a[i] -= mod;
    			}
    		}
    		return a;
    	}
    	poly minus (int n, poly a, poly b) {
    		for (int i = 0; i < n; ++i) {
    			if ((a[i] -= b[i]) < 0) {
    				a[i] += mod;
    			}
    		}
    		return a;
    	}
    	poly inv (int n, poly f) {
    		if (n == 1) {
    			return (poly) {power(f[0], mod - 2)};
    		}
    		f.resize(n);
    		poly g = inv(n >> 1, f);
    		g.resize(n, 0);
    		f = conv(n, f, g, 1);
    		g = minus(n, plu(n, g, g), f);
    		return g.resize(n), g;
    	}
    }
    int fac[N], c[N];
    poly A, B, C;
    int solve (int n) {
    	fac[0] = 1;
    	for (int i = 1; i <= n; ++i) {
    		fac[i] = 1ll * fac[i - 1] * i % mod;
    	}
    	A = trans(n, fac);
    	B = plu(A.size(), A, A), B[0] = (B[0] - 1 + mod) % mod;
    	A = inv(A.size(), A);
    	B = conv(B.size(), B, A);
    	for (int i = 0; i < n; ++i) {
    		c[i] = (mod - 1ll * i * B[i] % mod) % mod;
    	}
    	c[0] = (c[0] + 1) % mod;
    	C = trans(n, c);
    	C = inv(C.size(), C);
    	return C[n - 1];
    }
    int n;
    int main () {
    	cin >> n;
    	cout << solve(n + 1) << endl;
    	return 0;
    }
    
  • 相关阅读:
    第二次结对作业(陆桂莺+崔亚明)
    第一次结对作业
    第二次作业:代码互改
    markdown详细
    第一次个人编程作业:我的分数我做主
    手动下载transformers的模型
    torch设置GPU
    Python import的搜索路径和不可以import的解决方法 (On Linux)
    Python中windows路径的3种写法
    一台计算机安装多个版本的torch和CUDA的教程
  • 原文地址:https://www.cnblogs.com/psimonw/p/11637430.html
Copyright © 2020-2023  润新知