• Hamming code


    Also known as (7,4) code,7 trainsmitted bits for 4 source code.

    TRANSMIT

    The transmitted procedure can be reprecented as follows.

    $t=G^Ts$

    where G is:

    import numpy as np
    G = np.matrix(
        [[1,0,0,0],
         [0,1,0,0],
         [0,0,1,0],
         [0,0,0,1],
         [1,1,1,0],
         [0,1,1,1],
         [1,0,1,1]]).T
    s=np.matrix([[1,1,1,0]]).T
    
    t = (G.T*s)%2

    visualization

    $t_5,t_6,t_7$ is called parity-check bits

    ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    DECODING

    1.intuitive way: measure the similarity between the recieved bits $r$ and the encoded codes $t$

    2.Syndrome decoding

    dashed line for which parity is not even(unhappy)

    full line for which parity is even(happy)

    find the unique bit,that lies inside all unhappy circles and outside all happy circles

    the corresponding syndrome z as follow:

    (b) 110 ($t_5$ not even,$t_6$ not even,$t_7$ even),$r_2$ should be unflipped

    (c) 100 ($t_5$ not even,$t_6$ even,$t_7$ even),$r_5$ should be unflipped

    (d) 111 ($t_5$ not even,$t_6$ not even,$t_7$ not even),$r_3$ should be unflipped

    all the situations is listed in table below:

    the syndrome z can be achieved by matrix:

    $z=Hr$

    which H is:

    ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    PERFORMANCE

    1.when there is only one bit flipped in all 7 bits,the decoder can always get right

    2.when there are more than one bits flippend,the decoder get wrong

    the single bit error rate,can be estimate as follow:

    $p_b approx frac{1-{(1-f)}^2-7{(1-f)}^6f}{2}$

    the exact error rate is about 0.6688,which can be computed with following program.

     1 import numpy as np
     2 import copy
     3 import itertools
     4 from scipy.misc import comb
     5 
     6 def encode(s):
     7     G = np.array(
     8         [[1,0,0,0],
     9          [0,1,0,0],
    10          [0,0,1,0],
    11          [0,0,0,1],
    12          [1,1,1,0],
    13          [0,1,1,1],
    14          [1,0,1,1]]
    15     )
    16 
    17     return np.dot(G,s)%2
    18 
    19 def decode(r):
    20     t_hat = copy.deepcopy(r)
    21     H = np.array(
    22         [[1,1,1,0,1,0,0],
    23          [0,1,1,1,0,1,0],
    24          [1,0,1,1,0,0,1]]
    25     )
    26 
    27     syndrome_map = {0:-1,
    28            1:6,
    29            10:5,
    30            11:3,
    31            100:4,
    32            101:0,
    33            110:1,
    34            111:2}
    35 
    36     syndrome = np.dot(np.dot(H,r)%2,np.array([100,10,1]))
    37     if syndrome_map[syndrome]>=0:
    38         t_hat[syndrome_map[syndrome]] = (t_hat[syndrome_map[syndrome]]+1)%2
    39 
    40     return t_hat
    41 
    42 def flipn(flip_list,t):
    43     '''
    44     flipped the bits specified by flip_list and return it
    45     :param flip_list:
    46     :param t:
    47     :return:
    48     '''
    49     r = copy.deepcopy(t)
    50     for flip in flip_list:
    51         r[flip] = (r[flip]+1)%2
    52     return r
    53 
    54 def flipn_avg_err(n,s):
    55     '''
    56     get the average error bits when flip n bits
    57     :param n:
    58     :param s:
    59     :return:
    60     '''
    61     t = encode(s)
    62     items = range(7)
    63     errors = 0
    64     count = 0
    65     for flip in itertools.combinations(items,n):
    66         r = flipn(list(flip),t)
    67         t_hat = decode(r)
    68 
    69         errors += 4-sum(s==t_hat[:4])
    70         count += 1
    71     return errors*1.0/count
    72 
    73 f = 0.9
    74 s = np.array([0,0,0,0])
    75 all_error = 0.0
    76 for n in range(2,8):
    77     error = flipn_avg_err(n,s)
    78     all_error += error*comb(7,n)*(f**(7-n))*((1-f)**n)
    79 print all_error/4
    python
  • 相关阅读:
    MVC5+EF6简单实例---以原有SQLServer数据库两表联合查询为例
    2018-2019-1 20189221《Linux内核原理与分析》第五周作业
    2018-2019-1 20189221 《构建之法》第 2 周学习总结
    2018-2019-1 20189221 《从问题到程序》第 4 周学习总结
    2018-2019-1 20189221 《深入理解计算机系统》第 2 周学习总结
    2018-2019-1 20189221 《从问题到程序》第 3 周学习总结
    2018-2019-1 20189221《Linux内核原理与分析》第四周作业
    2018-2019-1 20189221 《从问题到程序》第二周学习总结
    2018-2019-1 20189221《Linux内核原理与分析》第三周作业
    2018-2019-1 20189221 《构建之法》第一周学习总结
  • 原文地址:https://www.cnblogs.com/porco/p/5109252.html
Copyright © 2020-2023  润新知