• 组合学习模型


    1.使用lasso回归进行特征选择

    《基于Lasso和BP神经网络的组合预测及其应用———以居民消费支出预测为例》

    *为了消除各变量之间的量纲的影响,且比较容易得到平稳序列,需要对部分数据进行对数处理。

    *单变量神经网络,滚动预测法   疑问:神经网络(机器学习算法)在怎么利用多变量数据预测未来值?

    Ensemble learning

    组合预测

    2.将时间序列预测转化成有监督学习(非常好的几篇博客)

    https://machinelearningmastery.com/start-here/#process

    https://machinelearningmastery.com/time-series-forecasting-supervised-learning/

    https://machinelearningmastery.com/convert-time-series-supervised-learning-problem-python/

    https://machinelearningmastery.com/backtest-machine-learning-models-time-series-forecasting/

    https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/

    https://en.wikipedia.org/wiki/Multicollinearity

    https://machinelearningmastery.com/understand-machine-learning-data-descriptive-statistics-python/

    https://machinelearningmastery.com/gentle-introduction-autocorrelation-partial-autocorrelation/

    窗口法和时间步方法的比较

    https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/

    1)LSTMs for Univariate Time Series Forecasting:https://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/

    2)LSTMs for Multivariate Time Series Forecasting:https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/

    3)LSTMs for Multi-Step Time Series Forecasting:https://machinelearningmastery.com/multi-step-time-series-forecasting-long-short-term-memory-networks-python

    How to Update LSTM Networks During Training for Time Series Forecasting

    https://machinelearningmastery.com/update-lstm-networks-training-time-series-forecasting/

    独热码

    https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-python/

    2.学习率怎么调

    将整个training set的10-20%作为validation set,每个epoch之后计算val set的loss,将val loss和train loss比较,当train loss持续下降而val loss不再一同下降或不降反升的时候以某个系数削减learning rate。我喜欢0.3左右的值,直到val loss趋于平稳,也就是将early stoping和learning rate的调整结合…


    作者:Nutastray
    链接:https://www.zhihu.com/question/56152826/answer/147994162
    来源:知乎

    3.优化器怎么选

    https://www.jianshu.com/p/d99b83f4c1a6

    4.在keras中如何对参数进行调优
    http://baijiahao.baidu.com/s?id=1594071159327391746&wfr=spider&for=pc

    5.如何在时间序列预测训练中更新LSTM网络?
    https://machinelearningmastery.com/update-lstm-networks-training-time-series-forecasting/
     
    6.详细讲解lstm数学原理
    https://zybuluo.com/hanbingtao/note/581764
     
    7.keras:4)LSTM函数详解
    https://blog.csdn.net/jiangpeng59/article/details/77646186/
    https://blog.csdn.net/luoganttcc/article/details/78981815
     
    8.提升深度学习模型的表现,你需要这20个技巧

     https://blog.csdn.net/shingle_/article/details/52653588

    9.使用深度学习LSTM时间序列预测

    http://www.jakob-aungiers.com/articles/a/LSTM-Neural-Network-for-Time-Series-Prediction

    10.LSTM超参数调试注意事项

    https://blog.csdn.net/chenzhi1992/article/details/77005876

    11.lstm股价预测

    Stock Market Predictions with LSTM in Python:https://www.datacamp.com/community/tutorials/lstm-python-stock-market

    12.scikit-learn线性回归算法库小结

    https://www.cnblogs.com/pinard/p/6026343.html

    13.用深度学习每次得到的结果都不一样,怎么办?

    https://machinelearningmastery.com/reproducible-results-neural-networks-keras/

    https://www.leiphone.com/news/201706/zt4Dm491Ol58C8Mc.html

    14.Python时间序列数据的基本特征工程

    https://machinelearningmastery.com/basic-feature-engineering-time-series-data-python/

  • 相关阅读:
    HTTP报文详解
    常用的HTTP协议
    URL详解
    一起切磋
    emacs使用指南
    SSH自动部署
    linux上应用随机启动
    让Maven正确处理javac警告
    最近的学习
    Java application 性能分析分享
  • 原文地址:https://www.cnblogs.com/pomodoro/p/9009243.html
Copyright © 2020-2023  润新知