• Dark roads--hdoj


                                                  Dark roads

    Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
    Total Submission(s) : 4   Accepted Submission(s) : 1
    Problem Description
    Economic times these days are tough, even in Byteland. To reduce the operating costs, the government of Byteland has decided to optimize the road lighting. Till now every road was illuminated all night long, which costs 1 Bytelandian Dollar per meter and day. To save money, they decided to no longer illuminate every road, but to switch off the road lighting of some streets. To make sure that the inhabitants of Byteland still feel safe, they want to optimize the lighting in such a way, that after darkening some streets at night, there will still be at least one illuminated path from every junction in Byteland to every other junction.

    What is the maximum daily amount of money the government of Byteland can save, without making their inhabitants feel unsafe?

     

    Input
    The input file contains several test cases. Each test case starts with two numbers m and n, the number of junctions in Byteland and the number of roads in Byteland, respectively. Input is terminated by m=n=0. Otherwise, 1 ≤ m ≤ 200000 and m-1 ≤ n ≤ 200000. Then follow n integer triples x, y, z specifying that there will be a bidirectional road between x and y with length z meters (0 ≤ x, y < m and x ≠ y). The graph specified by each test case is connected. The total length of all roads in each test case is less than 2[sup]31[/sup].
     

    Output
    For each test case print one line containing the maximum daily amount the government can save.
     

    Sample Input
    7 11 0 1 7 0 3 5 1 2 8 1 3 9 1 4 7 2 4 5 3 4 15 3 5 6 4 5 8 4 6 9 5 6 11 0 0
     

    Sample Output
    51
     

    Source
    2009/2010 Ulm Local Contest
     


    #include<stdio.h>
    #include<string.h>
    #include<stdlib.h>
    #include<algorithm>
    using namespace std;
    int pre[200010],n,m;
    struct s
    {
    	int x,y,v;
    }b[200010];
    int cmp(s n1,s n2)
    {
    	return n1.v<n2.v;
    }
    int find(int a)
    {
    	int r=a,i,j;
    	while(r!=pre[r])
    		r=pre[r];
    	i=a;
    	while(i!=r)
    	{
    		j=pre[i];
    		pre[i]=r;
    		i=j;
    	}
    	return r;
    }
    int fun()
    {
    	int sum=0,i,j,k;
    	for(i=0;i<m;i++)
    	{
    		int fa,fb;
    		fa=find(b[i].x);
    		fb=find(b[i].y);
    		if(fa!=fb)
    		{
    			pre[fa]=fb;
    			sum+=b[i].v;
    		}
    	}
    	return sum;
    }
    int main()
    {
    	//int n,m;
    	while(scanf("%d%d",&n,&m)!=EOF,n||m)
    	{
    		int i,sum=0,ans;
    		for(i=0;i<=n;i++)
    			pre[i]=i;
    		for(i=0;i<m;i++)
    		{
    			scanf("%d%d%d",&b[i].x,&b[i].y,&b[i].v);
    			sum+=b[i].v;
    		}
    		sort(b,b+m,cmp);
    		ans=fun();
    		printf("%d
    ",sum-ans);
    	}
    }



  • 相关阅读:
    【转载】Modelsim之 DO文件简介
    【原创】Quartus与Modelsim的联合仿真及脚本
    【原创】Quartus II 简单设计流程
    【原创】Modelsim仿真简单流程
    【原创】静态时序分析整理一
    【原创】DC的一些命令
    【转载】建立时间与保持时间
    linux 创建链接命令 ln -s 软链接
    Vim常用命令
    gvim查找与替换命令
  • 原文地址:https://www.cnblogs.com/playboy307/p/5273840.html
Copyright © 2020-2023  润新知