Square
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11824 Accepted Submission(s): 3794
Problem Description
Given a set of sticks of various lengths, is it possible to join them end-to-end to form a square?
Input
The first line of input contains N, the number of test cases. Each test case begins with an integer 4 <= M <= 20, the number of sticks. M integers follow; each gives the length of a stick - an integer between 1 and 10,000.
Output
For each case, output a line containing "yes" if is is possible to form a square; otherwise output "no".
Sample Input
3 4 1 1 1 1 5 10 20 30 40 50 8 1 7 2 6 4 4 3 5
Sample Output
yes no yes
有n支棍子,是否可以组成一个正方形
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int s[21],n,sum,target; bool used[21]; int cmp(int a,int b) { return a>b; } bool dfs(int curs,int curl,int pos) {//curs:找到了几条正方形的边,curl:当前边已经拼凑的长度,只用pos之后的 if(curs==3) return 1;//有了三条边,第四条肯定也是存在的 for(int i=pos;i<n;i++) { if(used[i]==true) continue; if(curl+s[i]==target) { used[i]=true; if(dfs(curs+1,0,0)==true)//找到一条边之后就找下一条边 return true; used[i]=false; } else if(curl+s[i]<target) { used[i]=true; if(dfs(curs,curl+s[i],i)==true) return true; used[i]=false;//回溯 ,一条边可用可不用 } } return false; } int main() { int t; scanf("%d",&t); while(t--) { memset(s,0,sizeof(s)); scanf("%d",&n); sum=0; for(int i=0;i<n;i++) { scanf("%d",&s[i]); sum+=s[i]; } target=sum/4; if(sum%4!=0||n<4) cout<<"no"<<endl; else { memset(used,false,sizeof(used)); sort(s,s+n,cmp); if(target<s[0]) cout<<"no"<<endl; else if(dfs(0,0,0)==true) cout<<"yes"<<endl; else cout<<"no"<<endl; } } return 0; }