• Logistic/Softmax Regression


    辅助函数

    牛顿法介绍

      1 %% Logistic Regression
      2 close all
      3 clear
      4 
      5 %%load data
      6 x = load('ex4x.dat');
      7 y = load('ex4y.dat');
      8 
      9 [m, n] = size(x);
     10 
     11 % Add intercept term to x
     12 x = [ones(m, 1), x];
     13 
     14 %%draw picture
     15 % find returns the indices of the
     16 % rows meeting the specified condition
     17 pos = find(y == 1);
     18 neg = find(y == 0);
     19 % Assume the features are in the 2nd and 3rd
     20 % columns of x
     21 figure('NumberTitle', 'off', 'Name', 'GD');
     22 plot(x(pos, 2), x(pos,3), '+');
     23 hold on;
     24 plot(x(neg, 2), x(neg, 3), 'o');
     25 
     26 % Define the sigmoid function
     27 g = inline('1 ./ (1 + exp(-z))');
     28 
     29 alpha = 0.001;
     30 theta = [-10,1,1]';
     31 obj_old = 1e10;
     32 tor = 1e-4;
     33 
     34 tic
     35 
     36 %%Gradient Descent
     37 for time = 1:1000
     38     delta = zeros(3,1);
     39     objective = 0;
     40 
     41     for i = 1:80
     42         z = x(i,:) * theta;
     43         h = g(z);%转换成logistic函数
     44         delta = (1/m) .* x(i,:)' * (y(i)-h) + delta;
     45         objective = (1/m) .*( -y(i) * log(h) - (1-y(i)) * log(1-h)) + objective;
     46     end
     47     theta = theta + alpha * delta;
     48 
     49     fprintf('objective is %.4f
    ', objective);
     50     if abs(obj_old - objective) < tor
     51         fprintf('torlerance is samller than %.4f
    ', tor);
     52         break;
     53     end
     54     obj_old = objective;
     55 end
     56 
     57 %%Calculate the decision boundary line
     58 plot_x = [min(x(:,2)),  max(x(:,2))];
     59 plot_y = (-1./theta(3)).*(theta(2).*plot_x +theta(1));
     60 plot(plot_x, plot_y)
     61 legend('Admitted', 'Not admitted', 'Decision Boundary')
     62 hold off
     63 toc
     64 pause(5);
     65 %%SGD
     66 
     67 figure('NumberTitle', 'off', 'Name', 'SGD');
     68 plot(x(pos, 2), x(pos,3), '+');
     69 hold on;
     70 plot(x(neg, 2), x(neg, 3), 'o');
     71 
     72 alpha = 0.001;
     73 theta = [-10,1,1]';
     74 obj_old = 1e10;
     75 tor = 1e-4;
     76 k=10;
     77 U=ceil(m/k);
     78 
     79 for time = 1:10000
     80     delta = zeros(3,1);
     81     rand('twister',time*4);
     82     idx=randperm(m);
     83     objective = 0;
     84 
     85     subidx=idx(1:k);
     86     for i=1:length(subidx)
     87         z = x(subidx(i),:) * theta;
     88         h = g(z);%转换成logistic函数
     89         delta = (1/k) .* x(subidx(i),:)' * (y(subidx(i))-h) + delta;
     90         objective = (1/k) .*( -y(subidx(i)) * log(h) - (1-y(subidx(i))) * log(1-h)) + objective;
     91     end
     92     theta = theta + alpha * delta;
     93 
     94     fprintf('objective is %.4f
    ', objective);
     95     if abs(obj_old - objective) < tor
     96         fprintf('torlerance is samller than %.4f
    ', tor);
     97         break;
     98     end
     99     obj_old = objective;
    100 end
    101 
    102 %%Calculate the decision boundary line
    103 plot_x = [min(x(:,2)),  max(x(:,2))];
    104 plot_y = (-1./theta(3)).*(theta(2).*plot_x +theta(1));
    105 plot(plot_x, plot_y)
    106 legend('Admitted', 'Not admitted', 'Decision Boundary')
    107 hold off
    108 toc
    109 pause(5)
    110 
    111 %%Newton's method
    112 
    113 figure('NumberTitle', 'off', 'Name', 'Newton');
    114 plot(x(pos, 2), x(pos,3), '+');
    115 hold on;
    116 plot(x(neg, 2), x(neg, 3), 'o');
    117 
    118 alpha = 0.001;
    119 theta = zeros(3, 1);
    120 obj_old = 1e10;
    121 tor = 1e-4;
    122 
    123 for i = 1:100
    124     delta = zeros(3,1);
    125     delta_H = zeros(3,3);
    126     objective = 0;
    127     % Calculate the hypothesis function
    128     for i = 1:80
    129         z = x(i,:) * theta;
    130         h = g(z);%转换成logistic函数
    131         delta = (1/m) .* x(i,:)' * (h-y(i)) + delta;
    132         delta_H = (1/m).* x(i,:)' * h * (1-h) * x(i,:) + delta_H;
    133         objective = (1/m) .*( -y(i) * log(h) - (1-y(i)) * log(1-h)) + objective;
    134     end
    135     theta = theta - delta_Hdelta;
    136     fprintf('objective is %.4f
    ', objective);
    137     if abs(obj_old - objective) < tor
    138         fprintf('torlerance is samller than %.4f
    ', tor);
    139         break;
    140     end
    141     obj_old = objective;
    142 end
    143 
    144 %%Calculate the decision boundary line
    145 plot_x = [min(x(:,2)),  max(x(:,2))];
    146 plot_y = (-1./theta(3)).*(theta(2).*plot_x +theta(1));
    147 plot(plot_x, plot_y)
    148 legend('Admitted', 'Not admitted', 'Decision Boundary')
    149 hold off
    150 toc
     1 %% Softmax Regression
     2 close all
     3 clear
     4 
     5 %%load data
     6 load('my_ex4x.mat');
     7 load('my_ex4y.mat');
     8 
     9 [m, n] = size(x);
    10 
    11 % Add intercept term to x
    12 x = [ones(m, 1), x];
    13 y = y + 1;
    14 
    15 class_num = max(y);
    16 n = n + 1;
    17 
    18 %%draw picture
    19 % find returns the indices of the
    20 % rows meeting the specified condition
    21 class2 = find(y == 2);
    22 class1 = find(y == 1);
    23 class3 = find(y == 3);
    24 % Assume the features are in the 2nd and 3rd
    25 % columns of x
    26 figure('NumberTitle', 'off', 'Name', 'GD');
    27 plot(x(class2, 2), x(class2,3), '+');
    28 hold on;
    29 plot(x(class1, 2), x(class1, 3), 'o');
    30 hold on;
    31 plot(x(class3, 2), x(class3, 3), '*');
    32 hold on;
    33 
    34 
    35 % Define the sigmoid function
    36 g = inline('exp(z) ./ sumz','z','sumz');
    37 
    38 alpha = 0.0001;
    39 theta = [-16,0.15,0.14;-10,1,-1]';
    40 obj_old = 1e10;
    41 tor = 1e-4;
    42 
    43 %%Gradient Descent
    44 for time = 1:1000
    45     delta = zeros(3,1);
    46     objective = 0;
    47     
    48     for i = 1:120
    49         for j = 1:2
    50             z = x(i,:) * theta(:,j);
    51             sumz = exp(x(i,:) * theta(:,1)) +  exp(x(i,:) * theta(:,2)) + 1;
    52             h = g(z,sumz);%转换成logistic函数
    53             if y(i)==j
    54                 delta = (1/m) .* x(i,:)' * (1-h);
    55                 theta(:,j) = theta(:,j) + alpha * delta;
    56                 objective = (1/m) .*(-y(i) * log(h)) + objective;
    57             else
    58                 delta = (1/m) .* x(i,:)' * (-h);
    59                 theta(:,j) = theta(:,j) + alpha * delta;
    60                 objective = (1/m) .*(-(1-y(i)) * log(1-h)) + objective;
    61             end
    62         end
    63     end
    64     
    65     fprintf('objective is %.4f
    ', objective);
    66     if abs(obj_old - objective) < tor
    67         fprintf('torlerance is samller than %.4f
    ', tor);
    68         break;
    69     end
    70     obj_old = objective;
    71 end
    72 
    73 %%Calculate the decision boundary line
    74 plot_x = [min(x(:,2)),  max(x(:,2))];
    75 plot_y = (-1./theta(3,1)).*(theta(2,1).*plot_x +theta(1,1));
    76 plot(plot_x, plot_y)
    77 legend('Admitted', 'Not admitted', 'Decision Boundary')
    78 hold on
    79 
    80 plot_y = (-1./theta(3,2)).*(theta(2,2).*plot_x +theta(1,2));
    81 plot(plot_x, plot_y)
    82 legend('Admitted', 'Not admitted', 'Decision Boundary')
    83 hold off
  • 相关阅读:
    H5实现魔方游戏
    T-SQL:CTE用法(十)
    c# API接收Base64转图片
    T-SQL :联接查询练习 (杂)
    T-SQL:基础练习(杂)
    UI5-文档-导航栏
    UI5-文档-4.10-Descriptor for Applications
    UI5-文档-4.9-Component Configuration
    UI5-文档-4.8-Translatable Texts
    UI5-文档-4.7-JSON Model
  • 原文地址:https://www.cnblogs.com/pkjplayer/p/6435239.html
Copyright © 2020-2023  润新知