• pytorch lstm 预测航空旅客数目


    airflights passengers dataset下载地址https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv

    这个dataset包含从1949年到1960年每个月的航空旅客数目,共12*12=144个数字。

    下面的程序中,我们以1949-1952的数据预测1953的数据,以1950-1953的数据预测1954的数据,以此类推,训练模型。

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import torch
    import torch.nn as nn
    from sklearn.preprocessing import MinMaxScaler
    import os
    
    # super parameters
    EPOCH = 400
    learning_rate = 0.01
    seq_length = 4   # 序列长度
    n_feature = 12   # 序列中每个元素的特征数目。本程序采用的序列元素为一年的旅客,一年12个月,即12维特征。
    
    # data
    data = pd.read_csv('airline-passengers.csv')   # 共 "12年*12个月=144" 个数据
    data = data.iloc[:, 1:5].values        # dataFrame, shape (144,1)
    data = np.array(data).astype(np.float32)
    sc = MinMaxScaler()
    data = sc.fit_transform(data)          # 归一化
    data = data.reshape(-1, n_feature)     # shape (12, 12)
    
    trainData_x = []
    trainData_y = []
    for i in range(data.shape[0]-seq_length):
        tmp_x = data[i:i+seq_length, :]
        tmp_y = data[i+seq_length, :]
        trainData_x.append(tmp_x)
        trainData_y.append(tmp_y)
    
    # model
    class Net(nn.Module):
        def __init__(self, in_dim=12, hidden_dim=10, output_dim=12, n_layer=1):
            super(Net, self).__init__()
            self.in_dim = in_dim
            self.hidden_dim = hidden_dim
            self.output_dim = output_dim
            self.n_layer = n_layer
            self.lstm = nn.LSTM(input_size=in_dim, hidden_size=hidden_dim, num_layers=n_layer, batch_first=True)
            self.linear = nn.Linear(hidden_dim, output_dim)
    
        def forward(self, x):
            _, (h_out, _) = self.lstm(x)  # h_out是序列最后一个元素的hidden state
                                          # h_out's shape (batchsize, n_layer*n_direction, hidden_dim), i.e. (1, 1, 10)
                                          # n_direction根据是“否为双向”取值为1或2
            h_out = h_out.view(h_out.shape[0], -1)   # h_out's shape (batchsize, n_layer * n_direction * hidden_dim), i.e. (1, 10)
            h_out = self.linear(h_out)    # h_out's shape (batchsize, output_dim), (1, 12)
            return h_out
    
    train = True
    if train:
        model = Net()
        loss_func = torch.nn.MSELoss()
        optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
        # train
        for epoch in range(EPOCH):
            total_loss = 0
            for iteration, X in enumerate(trainData_x):  # X's shape (seq_length, n_feature)
                X = torch.tensor(X).float()
                X = torch.unsqueeze(X, 0)                # X's shape (1, seq_length, n_feature), 1 is batchsize
                output = model(X)       # output's shape (1,12)
                output = torch.squeeze(output)
                loss = loss_func(output, torch.tensor(trainData_y[iteration]))
                optimizer.zero_grad()   # clear gradients for this training iteration
                loss.backward()         # computing gradients
                optimizer.step()        # update weights
                total_loss += loss
    
            if (epoch+1) % 20 == 0:
                print('epoch:{:3d}, loss:{:6.4f}'.format(epoch+1, total_loss.data.numpy()))
        # torch.save(model, 'flight_model.pkl')  # 这样保存会弹出UserWarning,建议采用下面的保存方法,详情可参考https://zhuanlan.zhihu.com/p/129948825
        torch.save({'state_dict': model.state_dict()}, 'checkpoint.pth.tar')
    
    else:
        # model = torch.load('flight_model.pth')
        model = Net()
        checkpoint = torch.load('checkpoint.pth.tar')
        model.load_state_dict(checkpoint['state_dict'])
    
    # predict
    model.eval()
    predict = []
    for X in trainData_x:             # X's shape (seq_length, n_feature)
        X = torch.tensor(X).float()
        X = torch.unsqueeze(X, 0)     # X's shape (1, seq_length, n_feature), 1 is batchsize
        output = model(X)             # output's shape (1,12)
        output = torch.squeeze(output)
        predict.append(output.data.numpy())
    
    # plot
    plt.figure()
    predict = np.array(predict)
    predict = predict.reshape(-1, 1).squeeze()
    x_tick = np.arange(len(predict)) + (seq_length*n_feature)
    plt.plot(list(x_tick), predict, label='predict data')
    
    data_original = data.reshape(-1, 1).squeeze()
    plt.plot(range(len(data_original)), data_original, label='original data')
    
    plt.legend(loc='best')
    plt.show()

    运行结果:

         

  • 相关阅读:
    高精度加法
    高精度计算(一)
    算法总结
    崛起之路
    2015浙江高考满分作文汇总(9篇)
    努力
    NOIP2015总结
    P3197 [HNOI2008]越狱[组合数学]
    【原创】SPFA判负环
    P1351 联合权值[鬼畜解法]
  • 原文地址:https://www.cnblogs.com/picassooo/p/13489987.html
Copyright © 2020-2023  润新知