• PyTorch LSTM的一个简单例子:实现MNIST图片分类


    上一篇博客中,我们实现了用LSTM对单词进行词性判断,本篇博客我们将实现用LSTM对MNIST图片分类。MNIST图片的大小为28*28,我们将其看成长度为28的序列,序列中的每个数据的维度是28,这样我们就可以把它变成一个序列数据了。代码如下,代码中的模型搭建参考了文末的参考资料[1],其余部分参考了文末的参考资料[2]。

    '''
    本程序实现用LSTM对MNIST进行图片分类
    '''
    
    import torch
    import numpy as np
    import torch.nn as nn
    import torch.utils.data as Data
    import torchvision
    import matplotlib.pyplot as plt
    
    
    # Hyper parameter
    EPOCH = 1
    LR = 0.001    # learning rate
    BATCH_SIZE = 50
    
    # Mnist digit dataset
    train_data = torchvision.datasets.MNIST(
        root='/Users/wangpeng/Desktop/all/CS/Courses/Deep Learning/mofan_PyTorch/mnist/',    # mnist has been downloaded before, use it directly
        train=True,    # this is training data
        transform=torchvision.transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
                                                        # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
        download=False,
    )
    
    # print(train_data.data.size())       # (60000, 28, 28)
    # print(train_data.targets.size())    # (60000)
    # plot one image
    # plt.imshow(train_data.data[0].numpy(), cmap='gray')
    # plt.title('{:d}'.format(train_data.targets[0]))
    # plt.show()
    
    # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
    train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
    
    test_data = torchvision.datasets.MNIST(
        root='/Users/wangpeng/Desktop/all/CS/Courses/Deep Learning/mofan_PyTorch/mnist/',
        train=False,  # this is training data
    )
    # print(test_data.data.size())       # (10000, 28, 28)
    # print(test_data.targets.size())    # (10000)
    # pick 2000 samples to speed up testing
    test_x = test_data.data.type(torch.FloatTensor)[:2000]/255    # shape (2000, 28, 28), value in range(0,1)
    test_y = test_data.targets[:2000]
    
    
    class LSTMnet(nn.Module):
        def __init__(self, in_dim, hidden_dim, n_layer, n_class):
            super(LSTMnet, self).__init__()
            self.n_layer = n_layer
            self.hidden_dim = hidden_dim
            self.lstm = nn.LSTM(in_dim, hidden_dim, n_layer, batch_first=True)
            self.linear = nn.Linear(hidden_dim, n_class)
    
        def forward(self, x):                  # x's shape (batch_size, 序列长度, 序列中每个数据的长度)
            out, _ = self.lstm(x)              # out's shape (batch_size, 序列长度, hidden_dim)
            out = out[:, -1, :]                # 中间的序列长度取-1,表示取序列中的最后一个数据,这个数据长度为hidden_dim,
                                               # 得到的out的shape为(batch_size, hidden_dim)
            out = self.linear(out)             # 经过线性层后,out的shape为(batch_size, n_class)
            return out
    
    
    model = LSTMnet(28, 64, 2, 10)             # 图片大小28*28,lstm的每个隐藏层64个节点,2层隐藏层
    if torch.cuda.is_available():
        model = model.cuda()
    
    optimizer = torch.optim.Adam(model.parameters(), lr=LR)
    criterion = nn.CrossEntropyLoss()
    
    # training and testing
    for epoch in range(EPOCH):
        for iteration, (train_x, train_y) in enumerate(train_loader):    # train_x's shape (BATCH_SIZE,1,28,28)
            train_x = train_x.squeeze()        # after squeeze, train_x's shape (BATCH_SIZE,28,28),
                                               # 第一个28是序列长度,第二个28是序列中每个数据的长度。
            output = model(train_x)
            loss = criterion(output, train_y)  # cross entropy loss
            optimizer.zero_grad()              # clear gradients for this training step
            loss.backward()                    # backpropagation, compute gradients
            optimizer.step()                   # apply gradients
    
            if iteration % 100 == 0:
                test_output = model(test_x)
                predict_y = torch.max(test_output, 1)[1].numpy()
                accuracy = float((predict_y == test_y.numpy()).astype(int).sum()) / float(test_y.size(0))
                print('epoch:{:<2d} | iteration:{:<4d} | loss:{:<6.4f} | accuracy:{:<4.2f}'.format(epoch, iteration, loss, accuracy))
    
    
    # print 10 predictions from test data
    test_out = model(test_x[:10])
    pred_y = torch.max(test_out, dim=1)[1].data.numpy()
    print('The predict number is:')
    print(pred_y)
    print('The real number is:')
    print(test_y[:10].numpy())

    结果如下:

    下图为本文的神经网络处理单张图片的过程:

    参考资料:

    [1] 10分钟快速入门PyTorch (6)

    [2] 莫烦PyTorch教程系列:CNN卷积神经网络

  • 相关阅读:
    Android内存优化4 了解java GC 垃圾回收机制2 GC执行finalize的过程
    Android内存优化3 了解java GC 垃圾回收机制1
    Android内存优化2 了解java内存分配 2
    Android内存优化1 了解java内存分配 1
    Android Parcel对象详解
    Android中Parcel的分析以及使用
    Android进阶笔记:Messenger源码详解
    Android进阶笔记:AIDL内部实现详解 (二)
    Android进阶笔记:AIDL内部实现详解 (一)
    Android开发高级进阶——多进程间通信
  • 原文地址:https://www.cnblogs.com/picassooo/p/12556293.html
Copyright © 2020-2023  润新知