• Matlab中的eig函数和Opecv中eigen()函数的区别


    奇异值分解的理论参见下面的链接

    http://www.cnblogs.com/pinard/p/6251584.html

     https://blog.csdn.net/shenziheng1/article/details/52916278

     https://blog.csdn.net/billbliss/article/details/78579308

     https://blog.csdn.net/zhongkejingwang/article/details/43053513

    https://blog.csdn.net/u010099080/article/details/68060274

    在Matlab中的eig()函数,和Opencv中的eigen()函数,都是用来获得矩阵的特征值和特征矢量。并且,这两个函数的输入矩阵必须是对称矩阵。

    Matlab中的eig()函数,常见的写法如下:

    [V D]=eig(A);

    D是矩阵A的特征值组成的对角矩阵,与A是同数据类型,同尺度。V是与特征值对应的特征矢量组成的矩阵。

    在Opencv中的eigen()函数,常见的写法如下:

    myEigen(A,D,V);
    函数中的A是输入矩阵,D和V是输出的特征值矢量和特征矢量组成的矩阵。eig()函数与eigen()函数的不同之处是:
    1、在eigen()中的D是一个一维特征值组成的列矢量,并且特征值是按照降序排序;而在eig()中的D则是一个以特征值为对角的对角矩阵,特征值是按照升序排序。

       2、在eigen()中的V是特征矢量组成的矩阵,矩阵中的每一行就是一个特征矢量;而在eig()中的V则是以特征矢量组成的矩阵,矩阵中的每一列即是一个特征矢量。

    下面是同一个实例,在Matlab中和Opencv中的比较:

    首先是Matlab中的eig函数的实例代码:

    clear;
    clc;
    A=[1,2,3;
         2,5,6;
         3,6,9];
     [V D]=eig(A);
     A_r=V*D*V';

    输入结果如下:

       

    下面是Opencv中eigen函数的实例代码:

    //为方便与Matlab中的eig()函数比较,我把eigen封装在一个函数里,并将特征值矢量转换成对角矩阵,与Matlab中类似
    void
    myEigen(Mat&A,Mat&D,Mat&V) { eigen(A,D,V); Mat E=Mat::eye(A.size(),A.type()); for(int i=0;i<A.rows;i++) { E.at<double>(i,i)=D.at<double>(0,i); } D=E.clone(); } const double eps=2.224e-16; int main() { Mat A=(Mat_<double>(3,3)<< 1,2,3, 2,5,6, 3,6,9); Mat D,V; myEigen(A,D,V); Mat A_r=V.t()*D*V; cout<<"原矩阵 A ="<<endl<<A<<endl; cout<<"重构矩阵A_r="<<endl<<A_r<<endl<<endl; cout<<"D="<<endl<<D<<endl; cout<<"V="<<endl<<V<<endl; return 0; }

    输出结果如下:

    比较Matlab和Opencv中的D、V值:

      

    Opencv中V的第一列,与Matlab中V的第一行数值一直,但排序相反,其它行列对比也基本一致。

  • 相关阅读:
    真正的成长就是颠覆你以前的世界观
    别蠢到用暴露自己软肋的方式,去表达你对别人的信任
    微信企业号的JAVA开发平台
    谁的青春不迷茫
    我才懒得去想我十年后是什么样子,我只在乎十年后的自己怎么看现在的我。
    2016年03月书单
    在人山人海里,你不必记得我
    Android模拟器Intel Atom下载安装配置
    Git与TortoiseGit使用方法
    Android开发环境搭建
  • 原文地址:https://www.cnblogs.com/phoenixdsg/p/9061687.html
Copyright © 2020-2023  润新知