1.ICP
假设有一组配对好的3D点, (P={P_{1}, ..., P_{N}}) , (P^{'}={P_{1}^{'}, ..., P_{N}^{'}})。
有一个欧式变换R,t,使得: (p_{i} = Rp^{'}_{i} + t)
该问题可以用迭代最近点(ICP)来求解。注意考虑两组3D点的变换时,和相机没有关系。
ICP求解线性代数的求解(SVD)和非线性优化方式求解(类似于BA)
2.SVD求解:
定义误差项: (e_{i} = p_{i} - ( Rp^{'}_{i} + t ))
构建最小二乘问题,使误差平方和达到极小的R,t
定义两组点的质心:
(p = frac{1}{n} sum^{n}_{i=1} (p_{i}), p^{'} = frac{1}{n} sum^{n}_{i=1} (p_{i}^{'}),)
步骤:
-
计算两组点的质心位置 (p,p^{'}),然后再计算每个点的去质心坐标:
(q_{i} = p_{i} - p, q_{i}^{'} = p_{i}^{'} - p^{'}) -
计算 (R^{*} = argmin frac{1}{2} sum^{n}_{i=1} || q_{i} - Rq_{i}^{'} ||^{2})
-
将上式展开,优化函数变为求解 (-tr( R sum^{n}_{i=1} q_{i}^{'} q_{i}^{T} ))
定义 (W=sum^{n}_{i=1} q_{i}^{'} q_{i}^{T}),对W进行SVD分解,得到(W=U Sigma V^{T}) -
Sigma 为奇异值组成的对角矩阵,对角线元素从大到小排列,而U和V为正交矩阵。当W满秩时,(R=UV^{T})
-
根据求出的R,计算t: (t^{*} = p - Rp^{'})
3.代码:
void pose_estimation_3d3d(const vector<Point3f> &pts1,
const vector<Point3f> &pts2,
Mat &R, Mat &t) {
Point3f p1, p2; // center of mass
//求质心
int N = pts1.size();
for (int i = 0; i < N; i++) {
p1 += pts1[i];
p2 += pts2[i];
}
p1 = Point3f(Vec3f(p1) / N);
p2 = Point3f(Vec3f(p2) / N);
vector<Point3f> q1(N), q2(N); // remove the center
//去质心
for (int i = 0; i < N; i++) {
q1[i] = pts1[i] - p1;
q2[i] = pts2[i] - p2;
}
// compute q1*q2^T
Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
for (int i = 0; i < N; i++) {
W += Eigen::Vector3d(q1[i].x, q1[i].y, q1[i].z) * Eigen::Vector3d(q2[i].x, q2[i].y, q2[i].z).transpose();
}
cout << "W=" << W << endl;
// SVD on W
Eigen::JacobiSVD<Eigen::Matrix3d> svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::Matrix3d U = svd.matrixU();
Eigen::Matrix3d V = svd.matrixV();
cout << "U=" << U << endl;
cout << "V=" << V << endl;
Eigen::Matrix3d R_ = U * (V.transpose());
if (R_.determinant() < 0) {
R_ = -R_;
}
Eigen::Vector3d t_ = Eigen::Vector3d(p1.x, p1.y, p1.z) - R_ * Eigen::Vector3d(p2.x, p2.y, p2.z);
// convert to cv::Mat
//推导是按第二张图到第一张图的变化,
//此处进行逆变换,即为第一张图到第二张图的变化
R = (Mat_<double>(3, 3) <<
R_(0, 0), R_(0, 1), R_(0, 2),
R_(1, 0), R_(1, 1), R_(1, 2),
R_(2, 0), R_(2, 1), R_(2, 2)
);
t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0));
}
4.非线性优化方法:
/// 节点,优化变量维度和数据类型
class VertexPose : public g2o::BaseVertex<6, Sophus::SE3d> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
//初始化
virtual void setToOriginImpl() override {
_estimate = Sophus::SE3d();
}
//更新估计值
/// left multiplication on SE3
virtual void oplusImpl(const double *update) override {
Eigen::Matrix<double, 6, 1> update_eigen;
update_eigen << update[0], update[1], update[2], update[3], update[4], update[5];
_estimate = Sophus::SE3d::exp(update_eigen) * _estimate;
}
virtual bool read(istream &in) override {}
virtual bool write(ostream &out) const override {}
};
/// 边,误差模型 观测维度,观测数据类型, 链接节点类型
class EdgeProjectXYZRGBDPoseOnly : public g2o::BaseUnaryEdge<3, Eigen::Vector3d, VertexPose> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
EdgeProjectXYZRGBDPoseOnly(const Eigen::Vector3d &point) : _point(point) {}
virtual void computeError() override {
//获取姿态估计值
const VertexPose *pose = static_cast<const VertexPose *> ( _vertices[0] );
//计算误差,测量值-转换值
_error = _measurement - pose->estimate() * _point;
}
//计算雅可比矩阵
//雅可比矩阵为[I,-P'^]
virtual void linearizeOplus() override {
VertexPose *pose = static_cast<VertexPose *>(_vertices[0]);
Sophus::SE3d T = pose->estimate();
Eigen::Vector3d xyz_trans = T * _point;
//单位矩阵
_jacobianOplusXi.block<3, 3>(0, 0) = -Eigen::Matrix3d::Identity();
//向量到反对称矩阵
_jacobianOplusXi.block<3, 3>(0, 3) = Sophus::SO3d::hat(xyz_trans);
}
bool read(istream &in) {}
bool write(ostream &out) const {}
protected:
Eigen::Vector3d _point;
};
//将顶点和边加入g2o
oid bundleAdjustment(
const vector<Point3f> &pts1,
const vector<Point3f> &pts2,
Mat &R, Mat &t) {
// 构建图优化,先设定g2o
typedef g2o::BlockSolverX BlockSolverType;
typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型
// 梯度下降方法,可以从GN, LM, DogLeg 中选
auto solver = new g2o::OptimizationAlgorithmLevenberg(
g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm(solver); // 设置求解器
optimizer.setVerbose(true); // 打开调试输出
// vertex
VertexPose *pose = new VertexPose(); // camera pose
pose->setId(0);
pose->setEstimate(Sophus::SE3d());
optimizer.addVertex(pose);
// edges
for (size_t i = 0; i < pts1.size(); i++) {
EdgeProjectXYZRGBDPoseOnly *edge = new EdgeProjectXYZRGBDPoseOnly(
Eigen::Vector3d(pts2[i].x, pts2[i].y, pts2[i].z));
edge->setVertex(0, pose);
edge->setMeasurement(Eigen::Vector3d(
pts1[i].x, pts1[i].y, pts1[i].z));
edge->setInformation(Eigen::Matrix3d::Identity());
optimizer.addEdge(edge);
}
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
optimizer.initializeOptimization();
optimizer.optimize(10);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "optimization costs time: " << time_used.count() << " seconds." << endl;
cout << endl << "after optimization:" << endl;
cout << "T=
" << pose->estimate().matrix() << endl;
// convert to cv::Mat
Eigen::Matrix3d R_ = pose->estimate().rotationMatrix();
Eigen::Vector3d t_ = pose->estimate().translation();
R = (Mat_<double>(3, 3) <<
R_(0, 0), R_(0, 1), R_(0, 2),
R_(1, 0), R_(1, 1), R_(1, 2),
R_(2, 0), R_(2, 1), R_(2, 2)
);
t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0));
}