• python3 源码阅读-虚拟机运行原理


    阅读源码版本python 3.8.3

    参考书籍<<Python源码剖析>>

    参考书籍<<Python学习手册 第4版>>

    官网文档目录介绍

    1. Doc目录主要是官方文档的说明。
    2. Include:目录主要包括了Python的运行的头文件。
    3. Lib:目录主要包括了用Python实现的标准库。
    4. Modules: 该目录中包含了所有用C语言编写的模块,比如random、cStringIO等。Modules中的模块是那些对速度要求非常严格的模块,而有一些对速度没有太严格要求的模块,比如os,就是用Python编写,并且放在Lib目录下的
    5. Objects:该目录中包含了所有Python的内建对象,包括整数、list、dict等。同时,该目录还包括了Python在运行时需要的所有的内部使用对象的实现。
    6. Parser:该目录中包含了Python解释器中的Scanner和Parser部分,即对Python源码进行词法分析和语法分析的部分。除了这些,Parser目录下还包含了一些有用的工具,这些工具能够根据Python语言的语法自动生成Python语言的词法和语法分析器,将python文件编译生成语法树等相关工作。
    7. Programs目录主要包括了python的入口函数。
    8. Python:目录主要包括了Python动态运行时执行的代码,里面包括编译、字节码解释器等工作。

    1. 总体架构

    image.png

    • Runtime Env:python运行时环境,初始化对象/类型系统(Object/Type structures),内存分配器(Memory Allocator) 和 运行时状态信息 (Current state of Python)。运行时状态维护了解释器在执行字节码时不同的状态(如正常和异常)之间的切换动作,可以视为一个巨大而复杂的有穷状态机。内存管理机制可参考另外一篇文章Python3 源码阅读 - 内存管理机制

    • Python Core: 中间部分是python的核心----解释器(PyInterpreter), 也可以成为PVM。大致流程就是 先对.py程序进行此法分析,将文件输入的源代码或从命令行输入的一行行python代码切分一个个Token, 然后使用Parser进行语法分析,建立抽象语法树(AST), Compiler根据AST生成字节码指令集合,最后由Code Evaluator来执行这些字节码。

    • File Groups: Python Lib库和用户自己的模块包等源代码文件

    2. Run Python文件的启动流程

    Python启动是由Programs下的python.c文件中的main函数开始执行

    /* Minimal main program -- everything is loaded from the library */
    
    #include "Python.h"
    #include "pycore_pylifecycle.h"
    
    #ifdef MS_WINDOWS
    int
    wmain(int argc, wchar_t **argv)
    {
        return Py_Main(argc, argv);
    }
    #else
    int
    main(int argc, char **argv)
    {
        return Py_BytesMain(argc, argv);
    }
    #endif
    
    int
    Py_Main(int argc, wchar_t **argv) {
        ...
        return pymian_main(&args);
    }
    
    static int
    pymain_main(_PyArgv *args)
    {
        PyStatus status = pymain_init(args);  // 初始化
        if (_PyStatus_IS_EXIT(status)) {
            pymain_free();
            return status.exitcode;
        }
        if (_PyStatus_EXCEPTION(status)) {
            pymain_exit_error(status);
        }
    
        return Py_RunMain();
    }
    

    2.1 初始化关键流程

    • 初始化一些与配置项 如:开启utf-8模式,设置Python内存分配器
    • 初始化pyinit_core核心部分
      • 创建生命周期 pycore_init_runtime, 同时生成HashRandom
      • 初始化线程和解释器并创建GIL锁 pycore_create_interpreter
      • 初始化所有基础类型,list, int, tuple等 pycore_init_types
      • 初始化sys模块 _PySys_Create
      • 初始化内建函数或者对象,如map, None, True等 pycore_init_builtins
        • 其中包括内建的错误类型初始化 _PyBuiltins_AddExceptions

    Python3.8 对Python解释器的初始化做了重构PEP 587-Python初始化配置

    2.2 run 相关源码阅读

    int
    Py_RunMain(void)
    {
        int exitcode = 0;
    	
        pymain_run_python(&exitcode);  //执行python脚本
    
    	if (Py_FinalizeEx() < 0) {  // 释放资源
            /* Value unlikely to be confused with a non-error exit status or
               other special meaning */
            exitcode = 120;
        }
    
        pymain_free();   // 释放资源
    
        if (_Py_UnhandledKeyboardInterrupt) {
            exitcode = exit_sigint();
        }
    
        return exitcode;
    }
    
    
    static void
    pymain_run_python(int *exitcode)
    {   
        // 获取一个持有GIL锁的解释器
        PyInterpreterState *interp = _PyInterpreterState_GET_UNSAFE();
        /* pymain_run_stdin() modify the config */
        ... // 添加sys_path等操作
    
        if (config->run_command) {
            // 命令行模式
            *exitcode = pymain_run_command(config->run_command, &cf); 
        }
        else if (config->run_module) {
            // 模块名
            *exitcode = pymain_run_module(config->run_module, 1);
        }
        else if (main_importer_path != NULL) {
            *exitcode = pymain_run_module(L"__main__", 0);
        }
        else if (config->run_filename != NULL) {
            // 文件名
            *exitcode = pymain_run_file(config, &cf);
        }
        else {
            *exitcode = pymain_run_stdin(config, &cf);
        }
    
    	...
    }
    
    /* Parse input from a file and execute it */ //Python/pythonrun.c
    int
    PyRun_AnyFileExFlags(FILE *fp, const char *filename, int closeit,
                         PyCompilerFlags *flags)
    {
        if (filename == NULL)
            filename = "???";
        if (Py_FdIsInteractive(fp, filename)) {
            int err = PyRun_InteractiveLoopFlags(fp, filename, flags);  // 是否是交互模式
            if (closeit)
                fclose(fp);
            return err;
        }
        else
            return PyRun_SimpleFileExFlags(fp, filename, closeit, flags);   // 执行脚本
    }
    
    // 执行python .py文件
    int
    PyRun_SimpleFileExFlags(FILE *fp, const char *filename, int closeit,
                            PyCompilerFlags *flags)
    {
        ...
        if (maybe_pyc_file(fp, filename, ext, closeit)) {
            FILE *pyc_fp;
            /* Try to run a pyc file. First, re-open in binary */
            ...
            v = run_pyc_file(pyc_fp, filename, d, d, flags);
        } else {
            /* When running from stdin, leave __main__.__loader__ alone */
            ...
            v = PyRun_FileExFlags(fp, filename, Py_file_input, d, d,
                                  closeit, flags);
        }
        ...
    }
    
    PyObject *
    PyRun_FileExFlags(FILE *fp, const char *filename_str, int start, PyObject *globals,
                      PyObject *locals, int closeit, PyCompilerFlags *flags)
    {
        ...
        // // 解析传入的脚本,解析成AST
        mod = PyParser_ASTFromFileObject(fp, filename, NULL, start, 0, 0,
                                         flags, NULL, arena); 
        ...
        // 将AST编译成字节码然后启动字节码解释器执行编译结果
        ret = run_mod(mod, filename, globals, locals, flags, arena);
        ...
    }
    
    // 查看run_mode
    static PyObject *
    run_mod(mod_ty mod, PyObject *filename, PyObject *globals, PyObject *locals,
                PyCompilerFlags *flags, PyArena *arena)
    {
        ...
        // 将AST编译成字节码
        co = PyAST_CompileObject(mod, filename, flags, -1, arena);  
        ...
    
        // 解释执行编译的字节码
        v = run_eval_code_obj(co, globals, locals);
        Py_DECREF(co);
        return v;
    }
    

    2.3 字节码查看案例

    新建test.py

    def show(a):
        return  a
    
    
    if __name__ == "__main__":
        print(show(10))
    
    

    执行命令: python3 -m dis test.py

    λ ppython3 -m dis test.py
      3           0 LOAD_CONST               0 (<code object show at 0x000000E7FC89E270, file "test.py", line 3>)
                  2 LOAD_CONST               1 ('show')
                  4 MAKE_FUNCTION            0
                  6 STORE_NAME               0 (show)
    
      7           8 LOAD_NAME                1 (__name__)
                 10 LOAD_CONST               2 ('__main__')
                 12 COMPARE_OP               2 (==)
                 14 POP_JUMP_IF_FALSE       28
    
      8          16 LOAD_NAME                2 (print)
                 18 LOAD_NAME                0 (show)
                 20 LOAD_CONST               3 (10)
                 22 CALL_FUNCTION            1
                 24 CALL_FUNCTION            1
                 26 POP_TOP
            >>   28 LOAD_CONST               4 (None)
    
    

    左边3, 7, 8表示 test.py中的第一行和第二行,右边表示python byte code

    Include/opcode.h 发现总共有 163 个 opcode, 所有的 python 源文件(Lib库中的文件)都会被编译器翻译成由 opcode 组成的 pyx 文件,并缓存在执行目录,下次启动程序如果源代码没有修改过,则直接加载这个pyx文件,这个文件的存在可以加快 python 的加载速度。普通.py文件如我们的test.py 是直接进行编译解释执行的,不会生成.pyc文件,想生成test.pyc 需要使用python内置的py_compile模块来编译该文件,或者执行命令python3 -m test.py python生成.pyc文件

    严格意义上来说: 只有文件导入import 的情况下字节码.pyc文件才会保存下来,__pycache__ --- 《python学习手册(第四版) Page40》

    2.4 python中的code对象

    字节码在python虚拟机中对应的是PyCodeObject对象, .pyc文件是字节码在磁盘上的表现形式。python编译的过程中,一个代码块就对应一个code对象,那么如何确定多少代码算是一个Code Block呢? 编译过程中遇到一个新的命名空间或者作用域时就生成一个code对象,即类或函数都是一个代码块,一个code的类型结构就是PyCodeObject, 参考Junnplus

    /* Bytecode object */
    typedef struct {
        PyObject_HEAD
        int co_argcount;            /* #arguments, except *args */     // 位置参数的个数,
        int co_posonlyargcount;     /* #positional only arguments */  
        int co_kwonlyargcount;      /* #keyword only arguments */
        int co_nlocals;             /* #local variables */
        int co_stacksize;           /* #entries needed for evaluation stack */
        int co_flags;               /* CO_..., see below */
        int co_firstlineno;         /* first source line number */
        PyObject *co_code;          /* instruction opcodes */
        PyObject *co_consts;        /* list (constants used) */
        PyObject *co_names;         /* list of strings (names used) */
        PyObject *co_varnames;      /* tuple of strings (local variable names) */
        PyObject *co_freevars;      /* tuple of strings (free variable names) */
        PyObject *co_cellvars;      /* tuple of strings (cell variable names) */
        /* The rest aren't used in either hash or comparisons, except for co_name,
           used in both. This is done to preserve the name and line number
           for tracebacks and debuggers; otherwise, constant de-duplication
           would collapse identical functions/lambdas defined on different lines.
        */
        Py_ssize_t *co_cell2arg;    /* Maps cell vars which are arguments. */
        PyObject *co_filename;      /* unicode (where it was loaded from) */
        PyObject *co_name;          /* unicode (name, for reference) */
        PyObject *co_lnotab;        /* string (encoding addr<->lineno mapping) See
                                       Objects/lnotab_notes.txt for details. */
        void *co_zombieframe;       /* for optimization only (see frameobject.c) */
        PyObject *co_weakreflist;   /* to support weakrefs to code objects */
        /* Scratch space for extra data relating to the code object.
           Type is a void* to keep the format private in codeobject.c to force
           people to go through the proper APIs. */
        void *co_extra;
    
        /* Per opcodes just-in-time cache
         *
         * To reduce cache size, we use indirect mapping from opcode index to
         * cache object:
         *   cache = co_opcache[co_opcache_map[next_instr - first_instr] - 1]
         */
    
        // co_opcache_map is indexed by (next_instr - first_instr).
        //  * 0 means there is no cache for this opcode.
        //  * n > 0 means there is cache in co_opcache[n-1].
        unsigned char *co_opcache_map;
        _PyOpcache *co_opcache;
        int co_opcache_flag;  // used to determine when create a cache.
        unsigned char co_opcache_size;  // length of co_opcache.
    } PyCodeObject;
    
    Field Content Type
    co_argcount Code Block 的参数个数 PyIntObject
    co_posonlyargcount Code Block 的位置参数个数 PyIntObject
    co_kwonlyargcount Code Block 的关键字参数个数 PyIntObject
    co_nlocals Code Block 中局部变量的个数 PyIntObject
    co_stacksize Code Block 的栈大小 PyIntObject
    co_flags N/A PyIntObject
    co_firstlineno Code Block 对应的 .py 文件中的起始行号 PyIntObject
    co_code Code Block 编译所得的字节码 PyBytesObject
    co_consts Code Block 中的常量集合 PyTupleObject
    co_names Code Block 中的符号集合 PyTupleObject
    co_varnames Code Block 中的局部变量名集合 PyTupleObject
    co_freevars Code Block 中的自由变量名集合 PyTupleObject
    co_cellvars Code Block 中嵌套函数所引用的局部变量名集合 PyTupleObject
    co_cell2arg N/A PyTupleObject
    co_filename Code Block 对应的 .py 文件名 PyUnicodeObject
    co_name Code Block 的名字,通常是函数名/类名/模块名 PyUnicodeObject
    co_lnotab Code Block 的字节码指令于 .py 文件中 source code 行号对应关系 PyBytesObject
    co_opcache_map python3.8新增字段,存储字节码索引与CodeBlock对象的映射关系 PyDictObject

    2.4.1 LOAD_CONST

    // Pythonceval.c
    PREDICTED(LOAD_CONST);     -> line 943: #define PREDICTED(op)           PRED_##op:
    FAST_DISPATCH();           -> line 876 #define FAST_DISPATCH() goto fast_next_opcode
    

    额外收获: c 语言中 ##和# 号 在marco 里的作用可以参考 这篇

    在宏定义里, ## 被称为连接符(concatenator) , a##b 表示将ab连接起来

    a 表示把a转换成字符串,即加双引号,

    所以LONAD_CONST这个指领根据宏定义展开如下:

    case TARGET(LOAD_CONST): {
        PRED_LOAD_CONST:
        PyObject *value = GETITEM(consts, oparg); // 获取一个PyObject* 指针对象
        Py_INCREF(value);  // 引用计数加1
        PUSH(value);     // 把刚刚创建的PyObject* push到当前的frame的stack上, 以便下一个指令从这个 stack 上面获取
        goto fast_next_opcode;
    

    2.5 main_loop

    // Pythonceval.c
    main_loop:
        for (;;) {
            ...
                
            switch (opcode) {
     
            /* BEWARE!
               It is essential that any operation that fails must goto error
               and that all operation that succeed call [FAST_]DISPATCH() ! */
     
            case TARGET(NOP): {
                FAST_DISPATCH();
            }
     
            case TARGET(LOAD_FAST): {
                PyObject *value = GETLOCAL(oparg);
                if (value == NULL) {
                    format_exc_check_arg(PyExc_UnboundLocalError,
                                         UNBOUNDLOCAL_ERROR_MSG,
                                         PyTuple_GetItem(co->co_varnames, oparg));
                    goto error;
                }
                Py_INCREF(value);
                PUSH(value);
                FAST_DISPATCH();
            }
     
            case TARGET(LOAD_CONST): {
                PREDICTED(LOAD_CONST);
                PyObject *value = GETITEM(consts, oparg);
                Py_INCREF(value);
                PUSH(value);
                FAST_DISPATCH();
            }
            ...
        }
    }
    

    在 python 虚拟机中,解释器主要在一个很大的循环中,不停地读入 opcode, 并根据 opcode 执行对应的指令,当执行完所有指令虚拟机退出,程序也就结束了

    2.6 总结

    image-20200608163433117.png

    过程描述:

    1. python先把代码(.py文件)编译成字节码,交给字节码虚拟机,然后虚拟机会从编译得到的PyCodeObject对象中一条一条执行字节码指令,并在当前的上下文环境中执行这条字节码指令,从而完成程序的执行。Python虚拟机实际上是在模拟操作中执行文件的过程。PyCodeObject对象中包含了字节码指令以及程序的所有静态信息,但没有包含程序运行时的动态信息——执行环境(PyFrameObject),后面会继续记录执行环境的阅读。
    2. 从整体上看:OS中执行程序离不开两个概念:进程和线程。python中模拟了这两个概念,模拟进程和线程的分别是PyInterpreterStatePyTreadState。即:每个PyThreadState都对应着一个帧栈,python虚拟机在多个线程上切换(靠GIL实现线程之间的同步)。当python虚拟机开始执行时,它会先进行一些初始化操作,最后进入PyEval_EvalFramEx函数,内部实现了一个main_loop它的作用是不断读取编译好的字节码,并一条一条执行,类似CPU执行指令的过程。函数内部主要是一个switch结构,根据字节码的不同执行不同的代码

    3. Python中的Frame

    如上所说,PyCodeObject对象只是包含了字节码指令集以及程序的相关静态信息,虚拟机的执行还需要一个执行环境,即PyFrameObject,也就是对系统栈帧的模拟。

    3.1 堆和栈的认识

    堆中存的是对象。栈中存的是基本数据类型和堆中对象的引用。一个对象的大小是不可估计的,或者说是可以动态变化的,但是在栈中,一个对象只对应了一个4btye的引用(堆栈分离的好处)

    内存中的堆栈和数据结构堆栈不是一个概念,可以说内存中的堆栈是真实存在的物理区,数据结构中的堆栈是抽象的数据存储结构。

    内存空间在逻辑上分为三部分:代码区,静态数据区和动态数据区,动态数据区有分为堆区和栈区

    • 代码区:存储的二进制代码块,高级调度(作业调度)、中级调度(内存调度)、低级调度(进程调度)控制代码区执行代码的切换
    • 静态数据区:存储全局变量,静态变量,常量,系统自动分配和回收。
    • 动态数据区:
      • 栈区(stack):存储运行方法的形参,局部变量,返回值,有编译器自动分配和回收,操作类似数据结构中的栈
      • 堆区(heap):new一个对象的引用或者地址存储在栈区,该地址指向指向对象存储在堆区中的真实数据。如c中的malloc函数,python中的Pymalloc

    image.png

    3.2 PyFrameObject对象

    typedef struct _frame{  
        PyObject_VAR_HEAD //"运行时栈"的大小是不确定的, 所以用可变长的对象
        struct _frame *f_back; //执行环境链上的前一个frame,很多个PyFrameObject连接起来形成执行环境链表  
        PyCodeObject *f_code; //PyCodeObject 对象,这个frame就是这个PyCodeObject对象的上下文环境  
        PyObject *f_builtins; //builtin名字空间  
        PyObject *f_globals;  //global名字空间  
        PyObject *f_locals;   //local名字空间  
        PyObject **f_valuestack; //"运行时栈"的栈底位置  
        PyObject **f_stacktop;   //"运行时栈"的栈顶位置  
        //...  
        int f_lasti;  //上一条字节码指令在f_code中的偏移位置  
        int f_lineno; //当前字节码对应的源代码行  
        //...  
          
        //动态内存,维护(局部变量+cell对象集合+free对象集合+运行时栈)所需要的空间  
        PyObject *f_localsplus[1];    
    } PyFrameObject; 
    

    如果你想知道 PyFrameObject 中每个字段的意义, 请参考 Junnplus' blog 或者直接阅读源代码,了解frame的执行过程可以参考zpoint'blog.

    名字空间实际上是维护着变量名和变量值之间关系的PyDictObject对象。
    f_builtins, f_globals, f_locals名字空间分别维护了builtin, global, local的name与对应值之间的映射关系。

    每一个 PyFrameObject对象都维护了一个 PyCodeObject对象,这表明每一个 PyFrameObject中的动态内存空间对象都和源代码中的一段Code相对应。

    每当在解释器中做一次函数调用时,会创建一个新的PyFrameObject对象,这个对象就是当前函数调用的栈帧对象。

    从调用栈理解Python协程的运行流程

    具体可以参考zpoint'blog. 以下为个人小结。

    python的yield是用底层虚拟机的栈状态切换来实现的,实现机制借鉴Lua5.2 的协程,

    CPythonyield实现是基于栈和Frame, PyFrameObjectCython中的一个模拟栈帧的对象,yield对应一个生成器对象genobject.c yield在虚拟机中对应一个操作码 YIELD_VALUE, 即虚拟机对应的字节码, 这样就可以很好的理解,上下文是如何保存的了,一个对象的状态保存和切换,使用一些属性来做,在虚拟机中很好实现。CPythonyield的确是单线程,或者说,其实CPythonyield和对应的生成器只是转化为一段字节码,CPython虚拟机的字节码执行是单线程的。

    yield的实现我个人理解为中断机制,当一个生成器对象初始化的时候就会把对应的参数,变量值放入堆中,当加载到yield 的时候,会先执行一个 LOAD FAST 的操作码,获取yield所要返回的值如果没有就是None, 将其压入栈中, 接着由于LOAD FAST对应着FAST DISPATCH的机制,就会继续执行下一个操作码 YIELD_VALUE 紧接着 POP_TOP 推出栈顶元素。此时被调用的Frame(当前的迭代器对象)并没有被释放而是进入一个zombie的状态,下一次同个代码段执行时, 这个 frame 对象会优先被复用。

    3.2.1 栈帧的获取,工作中会用到

    可以通过sys._getframe([depth]), 获取指定深度的PyFrameObject对象

    >>> import sys
    >>> frame = sys._getframe()
    >>> frame
    <frame object at 0x103ab2d48>
    

    3.2.2 python中变量名的解析规则 LEGB

    Local -> Enclosed -> Global -> Built-In

    • Local 表示局部变量

    • Enclosed 表示嵌套的变量

    • Global 表示全局变量

    • Built-In 表示内建变量

    如果这几个顺序都取不到,就会抛出 ValueError

    可以在这个网站python执行可视化网站,观察代码执行流程,以及变量的转换赋值情况。

    4. 额外收获

    意外收获: 之前知道pythonGIL , 遇到I/O阻塞时会释放gil,现在从源码中看到了对应的流程

    if (_Py_atomic_load_relaxed(&ceval->gil_drop_request)) {
        /* Give another thread a chance */
        if (_PyThreadState_Swap(&runtime->gilstate, NULL) != tstate) {
            Py_FatalError("ceval: tstate mix-up");
        }
        drop_gil(ceval, tstate);
    
        /* Other threads may run now */
    
        take_gil(ceval, tstate);
    
        /* Check if we should make a quick exit. */
        exit_thread_if_finalizing(runtime, tstate);
    
        if (_PyThreadState_Swap(&runtime->gilstate, tstate) != NULL) {
            Py_FatalError("ceval: orphan tstate");
        }
    }
    /* Check for asynchronous exceptions. */
    

    深入了解Python GIL

    参考资料:

    python 源码分析 基本篇

    python虚拟机运行原理

    CPython-Internals-frame-by-zpoint

  • 相关阅读:
    oracle timestamp的转换
    sql总结
    shell命令记录一些
    练手之 合并排序
    jquery的笔记
    jquery的几个小例子
    【转】JQUERY相关的几个网站
    hibernate spring sturts2配置
    oracle积累继续
    2018.8.21 2018暑假集训之方格取数
  • 原文地址:https://www.cnblogs.com/panlq/p/13069726.html
Copyright © 2020-2023  润新知