• POJ 2182 Lost Cows [树状数组+二分]


    Description

    N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacular display of poor judgment, they visited the neighborhood ‘watering hole’ and drank a few too many beers before dinner. When it was time to line up for their evening meal, they did not line up in the required ascending numerical order of their brands.

    Regrettably, FJ does not have a way to sort them. Furthermore, he’s not very good at observing problems. Instead of writing down each cow’s brand, he determined a rather silly statistic: For each cow in line, he knows the number of cows that precede that cow in line that do, in fact, have smaller brands than that cow.

    Given this data, tell FJ the exact ordering of the cows.
    Input

    • Line 1: A single integer, N

    • Lines 2..N: These N-1 lines describe the number of cows that precede a given cow in line and have brands smaller than that cow. Of course, no cows precede the first cow in line, so she is not listed. Line 2 of the input describes the number of preceding cows whose brands are smaller than the cow in slot #2; line 3 describes the number of preceding cows whose brands are smaller than the cow in slot #3; and so on.
      Output

    • Lines 1..N: Each of the N lines of output tells the brand of a cow in line. Line #1 of the output tells the brand of the first cow in line; line 2 tells the brand of the second cow; and so on.
      Sample Input

    5
    1
    2
    1
    0
    Sample Output

    2
    4
    5
    3
    1
    Source

    USACO 2003 U S Open Orange
    .
    .
    .
    .
    .

    分析

    树状数组的 SUM( X ) 用于记录 编号X 后面满足小于等于 X 的已经用掉了的编号的个数;F[ i ] 就是题目给出的 第 i 个牛 前面比 第i 个牛的编号小的编号的个数; 我们需要二分的就是 X,判断 X是不是当前第 i 头牛的编号。

    如果 (X-1)-SUM( X - 1) == F[ i ]
    (即 编号X 前面剩下的小于 X 的编号的数量恰好等于 第 i 头牛编号的条件, 则 X 就是 第 i 头牛的编号啦)

    如果(X-1)-SUM( X - 1) > F[ i ]
    (说明编号偏大咯)

    如果(X-1)-SUM( X - 1) < F[ i ]
    (说明编号偏小咯)
    .
    .
    .
    .
    .
    .

    程序:
    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <queue>
    using namespace std;
    int n,tree[10000],f[10000],num[10000];
    int lowbit(int x)
    {
        return x & -x;
    }
    void add(int x,int k)
    {
        while(x<=n)
        {
            tree[x]+=k;
            x+=lowbit(x);
        }
    }
    int sum(int x)
    {
        int ans=0;
        while(x>0)
        {
            ans+=tree[x];
            x-=lowbit(x);
        }
        return ans;
    }
    int main()
    {
        scanf("%d",&n);
        num[1]=0;
        for (int i=2;i<=n;i++)
            scanf("%d",&f[i]);
        num[n]=f[n]+1;
        add(num[n],1);
        for (int i=n-1;i>0;i--)
        {
            int l=1,r=n;
            while (r>l)
            {
                int mid=(l+r)>>1;
                if (mid-1-sum(mid)>=f[i]) r=mid; else l=mid+1;
            }
            num[i]=l;
            add(num[i],1);
        }
        for (int i=1;i<=n;i++)
            printf("%d
    ",num[i]);
        return 0;
    }
  • 相关阅读:
    内网很安全?错错错!附攻击演示
    Fiddler无所不能——之测试开发攻城狮必备利器
    【橙子独创】【假设前置数据异常法】案列解析
    偶发异常BUG,如何高效精准分析排查定位?
    史上最全提现模块案例分解
    移动端推送测试涉及点
    模拟导入系统通讯录5000+手机号 校验批量数据处理是否正常?
    发散逆向思维之查询类列表测试范围的思考
    PICT工具一键生成正交试验用例
    据说黑白红客大多是出身测试行业,那么前戏如何做好呢?戳下
  • 原文地址:https://www.cnblogs.com/YYC-0304/p/10292858.html
Copyright © 2020-2023  润新知