「WC2018」州区划分(FWT)
我去弄了一个升级版的博客主题,比以前好看多了。感谢 @Wider
不过我有阅读模式的话不知为何 ( ext{LATEX}) 不能用,所以我就把这个功能删掉了。
洛谷上不开 (O_2) 根本过不去,自带大常数被卡到 (15) 分。。。
首先题了读了很久,发现一个州的集合可以不连通。。。
我们可以 (O(n^22^n)) 检验每一个状态是否满足条件,用并查集即可。
(f[S]) 为状态 (S) 时的满意度之和,(g[S]) 当状态 (S) 为合法状态时为 (sum_S^p)
[f_S=frac {1}{sum_S^p}sum_{Tsubset S}f_Tg_{S-T}
]
然后这个东西可以用 (or) 卷积的 (FWT) 优化。我觉得出题人特地把数据范围出这么大应该是卡 (O(3^n)) 的枚举子集。
(Code Below:)
// luogu-judger-enable-o2
#include <bits/stdc++.h>
using namespace std;
const int mod=998244353;
int n,m,p,lim,w[30],d[30],e[30],fa[30],bin[30],cnt[1<<21],sum[1<<21],inv[1<<21],f[22][1<<21],g[22][1<<21];
inline int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline int sub(int x,int y){return x-y<0?x-y+mod:x-y;}
inline int mul(int x,int y){return 1ll*x*y-1ll*x*y/mod*mod;}
inline int fpow(int a,int b){
int ret=1;
for(;b;b>>=1,a=mul(a,a))
if(b&1) ret=mul(ret,a);
return ret;
}
inline void FWT(int *f,int n){
for(int len=1;len<n;len<<=1)
for(int i=0;i<n;i++)
if(i&len) f[i]=add(f[i],f[i^len]);
}
inline void IFWT(int *f,int n){
for(int len=1;len<n;len<<=1)
for(int i=0;i<n;i++)
if(i&len) f[i]=sub(f[i],f[i^len]);
}
inline int find(int x){
return (x==fa[x])?x:fa[x]=find(fa[x]);
}
inline bool check(int S){
if(cnt[S]<=1) return 0;
int tot=0;
for(int i=0;i<n;i++) fa[i]=i,d[i]=0;
for(int i=0;i<n;i++)
if(S&bin[i]){
sum[S]+=w[i];
for(int j=i+1;j<n;j++)
if((S&bin[j])&&(e[i]&bin[j])){
d[i]++;d[j]++;
if(find(i)!=find(j)) fa[fa[i]]=fa[j],tot++;
}
}
sum[S]=(p==0)?1:(p==1)?sum[S]:sum[S]*sum[S];
if(tot<cnt[S]-1) return 1;
for(int i=0;i<n;i++)
if((S&bin[i])&&(d[i]&1)) return 1;
return 0;
}
int main()
{
scanf("%d%d%d",&n,&m,&p);
lim=1<<n;bin[0]=1;
for(int i=1;i<=n;i++) bin[i]=bin[i-1]<<1;
for(int i=1;i<lim;i++) cnt[i]=cnt[i>>1]+(i&1);
int x,y;
for(int i=0;i<m;i++){
scanf("%d%d",&x,&y);
x--;y--;
e[x]|=bin[y];e[y]|=bin[x];
}
for(int i=0;i<n;i++) scanf("%d",&w[i]);
for(int i=0;i<lim;i++){
g[cnt[i]][i]=check(i)?sum[i]:0;
inv[i]=fpow(sum[i],mod-2);
}
for(int i=0;i<=n;i++) FWT(g[i],lim);
f[0][0]=1;FWT(f[0],lim);
for(int i=1;i<=n;i++){
for(int j=0;j<i;j++)
for(int k=0;k<lim;k++) f[i][k]=add(f[i][k],mul(f[j][k],g[i-j][k]));
IFWT(f[i],lim);
for(int k=0;k<lim;k++) f[i][k]=(cnt[k]==i)?mul(f[i][k],inv[k]):0;
if(i<n) FWT(f[i],lim);
}
printf("%d
",f[n][lim-1]);
return 0;
}