• DZY Loves Math(莫比乌斯反演)


    (x=p_1^{alpha_1}p_2^{alpha_2}...p_c^{alpha_c})

    (f(x)=max(alpha_1,alpha_2,...,alpha_c))

    (assume nleq m)

    (sum_{i=1}^{n}sum_{j=1}^{m}f(gcd(i,j)))

    (sum_{x=1}^{n}f(x)sum_{i=1}^{n}sum_{j=1}^{m}[gcd(i,j)=x])

    (sum_{x=1}^{n}f(x)sum_{i=1}^{frac nx}sum_{j=1}^{frac mx}[gcd(i,j)=1])

    (sum_{x=1}^{n}f(x)sum_{d=1}^{frac nx}mu(d)sum_{i=1}^{frac nx}sum_{j=1}^{frac mx}[d|i,d|j])

    (sum_{x=1}^{n}f(x)sum_{d=1}^{frac nx}mu(d)lfloor frac {n}{dx} floorlfloor frac {m}{dx} floor)

    (sum_{x=1}^{n}f(x)sum_{x|d}mu(frac dx)lfloor frac {n}{d} floorlfloor frac {m}{d} floor)

    (sum_{d=1}^{n}lfloor frac {n}{d} floorlfloor frac {m}{d} floorsum_{x|d}f(x)mu(frac dx))

    根据套路,我们到了这个式子。直接暴力调和级数算 (sum_{x|d}f(x)mu(frac dx)) 的前缀和,时间复杂度 (O(nlog n))

    怎么 (O(n)) 筛的锅待填

    (O(nlog n):)

    #include <bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int maxn=10000000+10;
    int n,m,f[maxn],mu[maxn],prim[maxn],vis[maxn],cnt;
    ll g[maxn];
     
    inline int read(){
        register int x=0,f=1;char ch=getchar();
        while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
        while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
        return (f==1)?x:-x;
    }
     
    void pre(int n){
        mu[1]=1;
        for(int i=2;i<=n;i++){
            if(!vis[i]){prim[++cnt]=i;mu[i]=-1;}
            for(int j=1;i*prim[j]<=n&&j<=cnt;j++){
                vis[i*prim[j]]=1;
                if(i%prim[j]==0) break;
                mu[i*prim[j]]=-mu[i];
            }
        }
        int num,ans;
        for(int i=1;i<=cnt;i++){
            for(int j=prim[i];j<=n;j+=prim[i]){
                num=j;ans=0;
                while(num%prim[i]==0) num/=prim[i],ans++;
                f[j]=max(f[j],ans);
            }
        }
        for(int i=1;i<=n;i++)
            for(int j=i;j<=n;j+=i) g[j]+=f[i]*mu[j/i];
        for(int i=1;i<=n;i++) g[i]+=g[i-1];
    }
     
    int main()
    {
        pre(10000000);
        int T=read();
        while(T--){
            n=read(),m=read();
            if(n>m) swap(n,m);
            ll ans=0;
            for(int l=1,r;l<=n;l=r+1){
                r=min(n/(n/l),m/(m/l));
                ans+=(ll)(n/l)*(m/l)*(g[r]-g[l-1]);
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    

    (O(n):)

    #include <bits/stdc++.h>
    #define int long long
    #define ll long long
    using namespace std;
    const int maxn=10000000+10;
    int n,m,f[maxn],low[maxn],prim[maxn],vis[maxn],cnt;
    ll g[maxn];
     
    inline int read(){
        register int x=0,f=1;char ch=getchar();
        while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
        while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
        return (f==1)?x:-x;
    }
     
    void pre(int n){
        for(int i=2;i<=n;i++){
            if(!vis[i]){low[i]=prim[++cnt]=i;f[i]=g[i]=1;}
            for(int j=1;i*prim[j]<=n&&j<=cnt;j++){
                vis[i*prim[j]]=1;
                if(i%prim[j]==0){
                    f[i*prim[j]]=f[i]+1;low[i*prim[j]]=low[i]*prim[j];
                    if(i==low[i]) g[i*prim[j]]=1;
                    else g[i*prim[j]]=(f[i/low[i]]==f[i*prim[j]])?-g[i/low[i]]:0;
                    break;
                }
                f[i*prim[j]]=1;low[i*prim[j]]=prim[j];
                g[i*prim[j]]=(f[i]==1)?-g[i]:0;
            }
        }
        for(int i=1;i<=n;i++) g[i]+=g[i-1];
    }
     
    signed main()
    {
        pre(10000000);
        int T=read();
        while(T--){
            n=read(),m=read();
            if(n>m) swap(n,m);
            ll ans=0;
            for(int l=1,r;l<=n;l=r+1){
                r=min(n/(n/l),m/(m/l));
                ans+=(ll)(n/l)*(m/l)*(g[r]-g[l-1]);
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    
  • 相关阅读:
    安装Windows 和 Linux双系统(vmware) Centos7
    Nginx
    rsync详细配置
    19、Squid代理服务器
    5、SAMBA服务二:配置实例
    5、SAMBA服务一:参数详解
    4、NFS
    1、网络基本配置
    Spring data mongodb使用
    win下MongoDB使用
  • 原文地址:https://www.cnblogs.com/owencodeisking/p/10237229.html
Copyright © 2020-2023  润新知