• java实现二叉树查找树


    二叉树(binary)是一种特殊的树。二叉树的每个节点最多只能有2个子节点:

    二叉树

    由于二叉树的子节点数目确定,所以可以直接采用上图方式在内存中实现。每个节点有一个左子节点(left children)和右子节点(right children)。左子节点是左子树的根节点,右子节点是右子树的根节点。

    如果我们给二叉树加一个额外的条件,就可以得到一种被称作二叉搜索树(binary search tree)的特殊二叉树。二叉搜索树要求:每个节点都不比它左子树的任意元素小,而且不比它的右子树的任意元素大。

    (如果我们假设树中没有重复的元素,那么上述要求可以写成:每个节点比它左子树的任意节点大,而且比它右子树的任意节点小)

    二叉搜索树,注意树中元素的大小

    二叉搜索树可以方便的实现搜索算法。在搜索元素x的时候,我们可以将x和根节点比较:

    1. 如果x等于根节点,那么找到x,停止搜索 (终止条件)

    2. 如果x小于根节点,那么搜索左子树

    3. 如果x大于根节点,那么搜索右子树

    二叉搜索树所需要进行的操作次数最多与树的深度相等。n个节点的二叉搜索树的深度最多为n,最少为log(n)。

    下面是用java实现的二叉搜索树,并有搜索,插入,删除,寻找最大最小节点的操作。

    删除节点相对比较复杂。删除节点后,有时需要进行一定的调整,以恢复二叉搜索树的性质(每个节点都不比它左子树的任意元素小,而且不比它的右子树的任意元素大)。

    • 叶节点可以直接删除。
    • 删除非叶节点时,比如下图中的节点8,我们可以删除左子树中最大的元素(或者右树中最大的元素),用删除的节点来补充元素8产生的空缺。但该元素可能也不是叶节点,所以它所产生的空缺需要其他元素补充…… 直到最后删除一个叶节点。上述过程可以递归实现。

    删除节点

    删除节点后的二叉搜索树

    import java.util.ArrayList;
    import java.util.List;
    
    public class BinarySearchTree {
    
    	// 树的根结点
    	private TreeNode root = null;
    
    	// 遍历结点列表
    	private List<TreeNode> nodelist = new ArrayList<TreeNode>();
    
    	private class TreeNode {
    
    		private int key;
    		private TreeNode leftChild;
    		private TreeNode rightChild;
    		private TreeNode parent;
    
    		public TreeNode(int key, TreeNode leftChild, TreeNode rightChild,
    				TreeNode parent) {
    			this.key = key;
    			this.leftChild = leftChild;
    			this.rightChild = rightChild;
    			this.parent = parent;
    		}
    
    		public int getKey() {
    			return key;
    		}
    
    		public String toString() {
    			String leftkey = (leftChild == null ? "" : String
    					.valueOf(leftChild.key));
    			String rightkey = (rightChild == null ? "" : String
    					.valueOf(rightChild.key));
    			return "(" + leftkey + " , " + key + " , " + rightkey + ")";
    		}
    
    	}
    
    	/**
    	 * isEmpty: 判断二叉查找树是否为空;若为空,返回 true ,否则返回 false .
    	 * 
    	 */
    	public boolean isEmpty() {
    		if (root == null) {
    			return true;
    		} else {
    			return false;
    		}
    	}
    
    	/**
    	 * TreeEmpty: 对于某些二叉查找树操作(比如删除关键字)来说,若树为空,则抛出异常。
    	 */
    	public void TreeEmpty() throws Exception {
    		if (isEmpty()) {
    			throw new Exception("树为空!");
    		}
    	}
    
    	/**
    	 * search: 在二叉查找树中查询给定关键字
    	 * 
    	 * @param key
    	 *            给定关键字
    	 * @return 匹配给定关键字的树结点
    	 */
    	public TreeNode search(int key) {
    		TreeNode pNode = root;
    		while (pNode != null && pNode.key != key) {
    			if (key < pNode.key) {
    				pNode = pNode.leftChild;
    			} else {
    				pNode = pNode.rightChild;
    			}
    		}
    		return pNode;
    	}
    
    	/**
    	 * minElemNode: 获取二叉查找树中的最小关键字结点
    	 * 
    	 * @return 二叉查找树的最小关键字结点
    	 * @throws Exception
    	 *             若树为空,则抛出异常
    	 */
    	public TreeNode minElemNode(TreeNode node) throws Exception {
    		if (node == null) {
    			throw new Exception("树为空!");
    		}
    		TreeNode pNode = node;
    		while (pNode.leftChild != null) {
    			pNode = pNode.leftChild;
    		}
    		return pNode;
    	}
    
    	/**
    	 * maxElemNode: 获取二叉查找树中的最大关键字结点
    	 * 
    	 * @return 二叉查找树的最大关键字结点
    	 * @throws Exception
    	 *             若树为空,则抛出异常
    	 */
    	public TreeNode maxElemNode(TreeNode node) throws Exception {
    		if (node == null) {
    			throw new Exception("树为空!");
    		}
    		TreeNode pNode = node;
    		while (pNode.rightChild != null) {
    			pNode = pNode.rightChild;
    		}
    		return pNode;
    	}
    
    	/**
    	 * successor: 获取给定结点在中序遍历顺序下的后继结点
    	 * 
    	 * @param node
    	 *            给定树中的结点
    	 * @return 若该结点存在中序遍历顺序下的后继结点,则返回其后继结点;否则返回 null
    	 * @throws Exception
    	 */
    	public TreeNode successor(TreeNode node) throws Exception {
    		if (node == null) {
    			return null;
    		}
    
    		// 若该结点的右子树不为空,则其后继结点就是右子树中的最小关键字结点
    		if (node.rightChild != null) {
    			return minElemNode(node.rightChild);
    		}
    		// 若该结点右子树为空
    		TreeNode parentNode = node.parent;
    		while (parentNode != null && node == parentNode.rightChild) {
    			node = parentNode;
    			parentNode = parentNode.parent;
    		}
    		return parentNode;
    	}
    
    	/**
    	 * precessor: 获取给定结点在中序遍历顺序下的前趋结点
    	 * 
    	 * @param node
    	 *            给定树中的结点
    	 * @return 若该结点存在中序遍历顺序下的前趋结点,则返回其前趋结点;否则返回 null
    	 * @throws Exception
    	 */
    	public TreeNode precessor(TreeNode node) throws Exception {
    		if (node == null) {
    			return null;
    		}
    
    		// 若该结点的左子树不为空,则其前趋结点就是左子树中的最大关键字结点
    		if (node.leftChild != null) {
    			return maxElemNode(node.leftChild);
    		}
    		// 若该结点左子树为空
    		TreeNode parentNode = node.parent;
    		while (parentNode != null && node == parentNode.leftChild) {
    			node = parentNode;
    			parentNode = parentNode.parent;
    		}
    		return parentNode;
    	}
    
    	/**
    	 * insert: 将给定关键字插入到二叉查找树中
    	 * 
    	 * @param key
    	 *            给定关键字
    	 */
    	public void insert(int key) {
    		TreeNode parentNode = null;
    		TreeNode newNode = new TreeNode(key, null, null, null);
    		TreeNode pNode = root;
    		if (root == null) {
    			root = newNode;
    			return;
    		}
    		while (pNode != null) {
    			parentNode = pNode;
    			if (key < pNode.key) {
    				pNode = pNode.leftChild;
    			} else if (key > pNode.key) {
    				pNode = pNode.rightChild;
    			} else {
    				// 树中已存在匹配给定关键字的结点,则什么都不做直接返回
    				return;
    			}
    		}
    		if (key < parentNode.key) {
    			parentNode.leftChild = newNode;
    			newNode.parent = parentNode;
    		} else {
    			parentNode.rightChild = newNode;
    			newNode.parent = parentNode;
    		}
    
    	}
    
    	/**
    	 * insert: 从二叉查找树中删除匹配给定关键字相应的树结点
    	 * 
    	 * @param key
    	 *            给定关键字
    	 */
    	public void delete(int key) throws Exception {
    		TreeNode pNode = search(key);
    		if (pNode == null) {
    			throw new Exception("树中不存在要删除的关键字!");
    		}
    		delete(pNode);
    	}
    
    	/**
    	 * delete: 从二叉查找树中删除给定的结点.
    	 * 
    	 * @param pNode
    	 *            要删除的结点
    	 * 
    	 *            前置条件: 给定结点在二叉查找树中已经存在
    	 * @throws Exception
    	 */
    	private void delete(TreeNode pNode) throws Exception {
    		if (pNode == null) {
    			return;
    		}
    		if (pNode.leftChild == null && pNode.rightChild == null) { // 该结点既无左孩子结点,也无右孩子结点
    			TreeNode parentNode = pNode.parent;
    			if (pNode == parentNode.leftChild) {
    				parentNode.leftChild = null;
    			} else {
    				parentNode.rightChild = null;
    			}
    			return;
    		}
    		if (pNode.leftChild == null && pNode.rightChild != null) { // 该结点左孩子结点为空,右孩子结点非空
    			TreeNode parentNode = pNode.parent;
    			if (pNode == parentNode.leftChild) {
    				parentNode.leftChild = pNode.rightChild;
    				pNode.rightChild.parent = parentNode;
    			} else {
    				parentNode.rightChild = pNode.rightChild;
    				pNode.rightChild.parent = parentNode;
    			}
    			return;
    		}
    		if (pNode.leftChild != null && pNode.rightChild == null) { // 该结点左孩子结点非空,右孩子结点为空
    			TreeNode parentNode = pNode.parent;
    			if (pNode == parentNode.leftChild) {
    				parentNode.leftChild = pNode.leftChild;
    				pNode.rightChild.parent = parentNode;
    			} else {
    				parentNode.rightChild = pNode.leftChild;
    				pNode.rightChild.parent = parentNode;
    			}
    			return;
    		}
    		// 该结点左右孩子结点均非空,则删除该结点的后继结点,并用该后继结点取代该结点
    		TreeNode successorNode = successor(pNode);
    		delete(successorNode);
    		pNode.key = successorNode.key;
    	}
    
    	/**
    	 * inOrderTraverseList: 获得二叉查找树的中序遍历结点列表
    	 * 
    	 * @return 二叉查找树的中序遍历结点列表
    	 */
    	public List<TreeNode> inOrderTraverseList() {
    		if (nodelist != null) {
    			nodelist.clear();
    		}
    		inOrderTraverse(root);
    		return nodelist;
    	}
    
    	/**
    	 * inOrderTraverse: 对给定二叉查找树进行中序遍历
    	 * 
    	 * @param root
    	 *            给定二叉查找树的根结点
    	 */
    	private void inOrderTraverse(TreeNode root) {
    		if (root != null) {
    			inOrderTraverse(root.leftChild);
    			nodelist.add(root);
    			inOrderTraverse(root.rightChild);
    		}
    	}
    
    	/**
    	 * toStringOfOrderList: 获取二叉查找树中关键字的有序列表
    	 * 
    	 * @return 二叉查找树中关键字的有序列表
    	 */
    	public String toStringOfOrderList() {
    		StringBuilder sbBuilder = new StringBuilder(" [ ");
    		for (TreeNode p : inOrderTraverseList()) {
    			sbBuilder.append(p.key);
    			sbBuilder.append(" ");
    		}
    		sbBuilder.append("]");
    		return sbBuilder.toString();
    	}
    
    	/**
    	 * 获取该二叉查找树的字符串表示
    	 */
    	public String toString() {
    		StringBuilder sbBuilder = new StringBuilder(" [ ");
    		for (TreeNode p : inOrderTraverseList()) {
    			sbBuilder.append(p);
    			sbBuilder.append(" ");
    		}
    		sbBuilder.append("]");
    		return sbBuilder.toString();
    	}
    
    	public TreeNode getRoot() {
    		return root;
    	}
    
    	public static void testNode(BinarySearchTree bst, TreeNode pNode)
    			throws Exception {
    		System.out.println("本结点: " + pNode);
    		System.out.println("前趋结点: " + bst.precessor(pNode));
    		System.out.println("后继结点: " + bst.successor(pNode));
    	}
    
    	public static void testTraverse(BinarySearchTree bst) {
    		System.out.println("二叉树遍历:" + bst);
    		System.out.println("二叉查找树转换为有序列表: " + bst.toStringOfOrderList());
    	}
    
    	public static void main(String[] args) {
    		try {
    			BinarySearchTree bst = new BinarySearchTree();
    			System.out.println("查找树是否为空? " + (bst.isEmpty() ? "是" : "否"));
    			int[] keys = new int[] { 15, 6, 18, 3, 7, 13, 20, 2, 9, 4 };
    			for (int key : keys) {
    				bst.insert(key);
    			}
    			System.out.println("查找树是否为空? " + (bst.isEmpty() ? "是" : "否"));
    			TreeNode minkeyNode = bst.minElemNode(bst.getRoot());
    			System.out.println("最小关键字: " + minkeyNode.getKey());
    			testNode(bst, minkeyNode);
    			TreeNode maxKeyNode = bst.maxElemNode(bst.getRoot());
    			System.out.println("最大关键字: " + maxKeyNode.getKey());
    			testNode(bst, maxKeyNode);
    			System.out.println("根结点关键字: " + bst.getRoot().getKey());
    			testNode(bst, bst.getRoot());
    			testTraverse(bst);
    			System.out.println("****************************** ");
    			testTraverse(bst);
    		} catch (Exception e) {
    			System.out.println(e.getMessage());
    			e.printStackTrace();
    		}
    	}
    
    }
      
    

      

  • 相关阅读:
    金融的本质
    读书笔记-关键对话
    pem转pfx
    pem转cer
    Java基础学习总结——Java对象的序列化和反序列化
    Kafka学习之consumer端部署及API
    zookeeper实战:SingleWorker代码样例
    Thread.setDaemon详解
    json对象转换
    【转】Hadoop学习路线图
  • 原文地址:https://www.cnblogs.com/oumyye/p/4590829.html
Copyright © 2020-2023  润新知