• cocos creator基础-(二十八)creator网格导航寻路


    1、插件或者TileMap工具生成地图json文件

    2、astar寻路算法(终点 详情请看JS学习内的文章)

    3、将json文件与寻路算法结合,获得路径坐标,并转化为游戏内的实际坐标

    // astar算法 模仿blake老师的写法,用来熟悉算法
    
    var map_maze = []; // 场景节点顺序保存数组
    var open_table = []; // 开启列表
    var close_table = []; // 关闭列表
    var path_stack = []; // 保存路径
    
    var is_found = 0; // 是否找到路径 1 true 0 false
    var open_node_count = 0; // 开启列表元素个数
    var close_node_count = 0; // 关闭列表元素个数
    var top = -1; // path_stack从后往前变量指针
    
    var map_height = 0; //地图高度
    var map_width = 0; // 地图宽度
    var BARRIER = 1; // 阻挡标记
    
    function swap(idx1, idx2) {
        var tmp = open_table[idx1];
        open_table[idx1] = open_table[idx2];
        open_table[idx2] = tmp;
    }
    
    function adjust_heap(nIndex){
        var curr = nIndex;
        var child = curr * 2 - 1; // 得到左孩子idx( 下标从0开始,所有做孩子是curr*2+1 )
        var parent = Math.floor((curr - 1) / 2); // 得到双亲idx  
        if(nIndex < 0 || nIndex >= open_node_count){
            return;
        }
    
        // 往下调整( 要比较左右孩子和cuur parent )  
        while(child < open_node_count){
            if(child + 1 < open_node_count && 
                open_table[child].s_g + open_table[child].s_h > open_table[child + 1].s_g + open_table[child + 1].s_h){
                ++child; // 判断左右孩子大小  
            }
    
            if (open_table[curr].s_g + open_table[curr].s_h <= open_table[child].s_g + open_table[child].s_h) {
                break;
            }else{
                swap(child, curr); // 交换节点  
                curr = child;// 再判断当前孩子节点  
                child = curr * 2 + 1; // 再判断左孩子  
            }
        }
    
        if (curr != nIndex) {
            return;
        }
    
        // 往上调整( 只需要比较cuur child和parent )  
        while (curr != 0) {
            if (open_table[curr].s_g + open_table[curr].s_h >= open_table[parent].s_g + open_table[parent].s_h) {
                break;
            } else {
                swap(curr, parent);
                curr = parent;
                parent = Math.floor((curr - 1) / 2);
            }
        }
    }
    
    function insert_to_opentable(x, y, curr_node, end_node, w){ // w损耗
        var i;
        if (map_maze[x * map_width + y].s_style != BARRIER){ // 不是障碍物 
            if (!map_maze[x * map_width + y].s_is_in_closetable){ // 不在闭表中  
                if (map_maze[x * map_width + y].s_is_in_opentable){ // 在open表中 
                    // 需要判断是否是一条更优化的路径  
                    // 检查如果用新的路径 (就是经过C 的路径) 到达它的话, G值是否会更低一些, 
                    // 如果新的G值更低, 那就把它的 "父方格" 改为目前选中的方格 C, 
                    // 然后重新计算它的 F 值和 G 值 (H 值不需要重新计算, 因为对于每个方块, H 值是不变的). 
                    // 如果新的 G 值比较高, 就说明经过 C 再到达 D 不是一个明智的选择, 因为它需要更远的路, 这时我们什么也不做.
                    if (map_maze[x * map_width + y].s_g > curr_node.s_g + w){ //如果更优化
                        map_maze[x * map_width + y].s_g = curr_node.s_g + w;
                        map_maze[x * map_width + y].s_parent = curr_node;
    
                        for (i = 0; i < open_node_count; ++i) {
                            if (open_table[i].s_x == map_maze[x * map_width + y].s_x && open_table[i].s_y == map_maze[x * map_width + y].s_y) {
                                break;
                            }
                        }
    
                        adjust_heap(i); // 下面调整点  
                    }
                }else{// 不在open中  
                    map_maze[x * map_width + y].s_g = curr_node.s_g + w;
                    map_maze[x * map_width + y].s_h = Math.abs(end_node.s_x - x) + Math.abs(end_node.s_y - y);
                    map_maze[x * map_width + y].s_parent = curr_node;
                    map_maze[x * map_width + y].s_is_in_opentable = 1;
                    open_table[open_node_count++] = (map_maze[x * map_width + y]);
                }
            }
        }  
    }
    
    // 邻居处理
    function get_neighbors(curr_node, end_node) {
        var x = curr_node.s_x;
        var y = curr_node.s_y;
    
        // 下面对于8个邻居进行处理!  
        //  直线损耗10 斜线损耗14
        if ((x + 1) >= 0 && (x + 1) < map_height && y >= 0 && y < map_width) {
            insert_to_opentable(x + 1, y, curr_node, end_node, 10);
        }
    
        if ((x - 1) >= 0 && (x - 1) < map_height && y >= 0 && y < map_width) {
            insert_to_opentable(x - 1, y, curr_node, end_node, 10);
        }
    
        if (x >= 0 && x < map_height && (y + 1) >= 0 && (y + 1) < map_width) {
            insert_to_opentable(x, y + 1, curr_node, end_node, 10);
        }
    
        if (x >= 0 && x < map_height && (y - 1) >= 0 && (y - 1) < map_width) {
            insert_to_opentable(x, y - 1, curr_node, end_node, 10);
        }
    
        if ((x + 1) >= 0 && (x + 1) < map_height && (y + 1) >= 0 && (y + 1) < map_width) {
            insert_to_opentable(x + 1, y + 1, curr_node, end_node, 10 + 4);
        }
    
        if ((x + 1) >= 0 && (x + 1) < map_height && (y - 1) >= 0 && (y - 1) < map_width) {
            insert_to_opentable(x + 1, y - 1, curr_node, end_node, 10 + 4);
        }
    
        if ((x - 1) >= 0 && (x - 1) < map_height && (y + 1) >= 0 && (y + 1) < map_width) {
            insert_to_opentable(x - 1, y + 1, curr_node, end_node, 10 + 4);
        }
    
        if ((x - 1) >= 0 && (x - 1) < map_height && (y - 1) >= 0 && (y - 1) < map_width) {
            insert_to_opentable(x - 1, y - 1, curr_node, end_node, 10 + 4);
        }
    }
    
    // 0. 初始化01地图
    
    // 1. 从起点A开始, 把它作为待处理的方格存入一个"开启列表", 开启列表就是一个等待检查方格的列表.
    
    // 2. 寻找起点A周围可以到达的方格, 将它们放入"开启列表", 并设置它们的"父方格"为A.
    
    // 3. 从"开启列表"中删除起点 A, 并将起点 A 加入"关闭列表", "关闭列表"中存放的都是不需要再次检查的方格
    
    // 4. 从 "开启列表" 中选择 F 值最低的方格 C (绿色起始方块 A 右边的方块),检查它所有相邻并且可以到达 (障碍物和 "关闭列表" 的方格都不考虑) 的方格. 如果这些方格还不在 "开启列表" 里的话, 将它们加入 "开启列表", 计算这些方格的 G, H 和 F 值各是多少, 并设置它们的 "父方格" 为 C.
    
    // 5. 如果某个相邻方格 D 已经在 "开启列表" 里了, 检查如果用新的路径 (就是经过C 的路径) 到达它的话, G值是否会更低一些, 如果新的G值更低, 那就把它的 "父方格" 改为目前选中的方格 C, 然后重新计算它的 F 值和 G 值 (H 值不需要重新计算, 因为对于每个方块, H 值是不变的). 如果新的 G 值比较高, 就说明经过 C 再到达 D 不是一个明智的选择, 因为它需要更远的路, 这时我们什么也不做.
    
    // 就这样, 我们从 "开启列表" 找出 F 值最小的, 将它从 "开启列表" 中移掉, 添加到 "关闭列表". 再继续找出它周围可以到达的方块, 如此循环下去...
    
    // 那么什么时候停止呢? —— 当我们发现 "开始列表" 里出现了目标终点方块的时候, 说明路径已经被找到.
    
    // 最后以终点为起点通过 "父方块" 可以依次索引到最初的 "起始方块", 这样就得到了路径
    
    
    // 0.(此处是否可优化下map_maze的初始化,不必每次都清空push一次???)
    function astar_init(map){
        open_table = [];
        close_table = [];
        path_stack = [];
        map_maze = [];
    
        map_height = map.height;
        map_width = map.width;
    
        is_found = 0;
        open_node_count = 0;
        close_node_count = 0;
        top = -1;
    
        for (var i = 0; i < map.length; i++){
            for(var j = 0; j < map.width; j++){
                var node = {};
                // F = G + H 其中,F 是从起点经过该点到终点的总路程,G 为起点到该点的“已走路程”,H 为该点到终点的“预计路程”。
                node.s_g = 0; // g值
                node.s_h = 0;
                node.s_is_in_closetable = 0;
                node.s_is_in_opentable = 0;
                node.s_style = map.data[i * map.width + j]; // 数据类型 0 1
                node.s_x = i;
                node.s_y = j;
                node.s_parent = null;
                map_maze.push(node);
    
                path_stack.push(null);
                open_table.push(null);
                close_table.push(null);
            }
        }
    }
    
    // 1. A*核心代码
    function astar_search(map, src_x, src_y, dst_x, dst_y){
        var path = [];
        if(src_x == dst_x && src_y == dst_y){
            console.log("起点==终点!");
            return path;
        }
    
        // 初始化map
        astar_init(map);
    
        //1. 从起点A开始, 把它作为待处理的方格存入一个"开启列表", 开启列表就是一个等待检查方格的列表.
        var start_node = map_maze[src_y * map.width + src_x];
        var end_node = map_maze[dst_y * map.width + dst_x];
        var curr_node = null;
    
        open_table[open_node_count++] = start_node;
    
        start_node.s_is_in_opentable = 1; // 加入open表
        start_node.s_g = 0;
        // 曼哈顿距离
        start_node.s_h = Math.abs(end_node.s_x - start_node.s_x) + Math.abs(end_node.s_y - start_node.s_y);
        start_node.s_parent = null;
    
        is_found = 0;
    
        while(1){
            curr_node = open_table[0]; // open表的第一个点一定是f值最小的点(通过堆排序得到的)  
            open_table[0] = open_table[--open_node_count]; // 最后一个点放到第一个点,然后进行堆调整  
            adjust_heap(0); // 调整堆
    
            close_table[close_node_count++] = curr_node; // 当前点加入close表  
            curr_node.s_is_in_closetable = 1; // 已经在close表中了 
    
            if (curr_node.s_x == end_node.s_x && curr_node.s_y == end_node.s_y) // 终点在close中,结束  
            {
                is_found = 1;
                break;
            }
    
            get_neighbors(curr_node, end_node); // 对邻居的处理  
    
    
            if (open_node_count == 0) // 没有路径到达  
            {
                is_found = 0;
                break;
            }
        }    
    
        if(is_found){
            curr_node = end_node;
    
            while(curr_node){
                path_stack[++top] = curr_node;
                curr_node = curr_node.s_parent;
            }
    
            while (top >= 0) // 下面是输出路径看看~  
            {
                console.log(path_stack[top].s_y, path_stack[top].s_x);
                path.push(cc.v2(path_stack[top].s_y, path_stack[top].s_x));
                top--;
            }
        }else{
            console.log("么有找到路径");    
        }
        return path;
    }
    
    module.exports = {
        search: astar_search,
    };

    // nav_map.js 将路径转换为游戏内的坐标
    var astar = require("astar");
    
    cc.Class({
        extends: cc.Component,
    
        properties: {
            // foo: {
            //    default: null,      // The default value will be used only when the component attaching
            //                           to a node for the first time
            //    url: cc.Texture2D,  // optional, default is typeof default
            //    serializable: true, // optional, default is true
            //    visible: true,      // optional, default is true
            //    displayName: 'Foo', // optional
            //    readonly: false,    // optional, default is false
            // },
            // ...
            is_debug: true,
        },
    
        onLoad: function(){
            var newNode = new cc.Node();
    
            this.new_draw_node = newNode.addComponent(cc.Graphics);
            this.node.addChild(newNode);
    
            this.new_draw_node.lineWidth = 2;
    
            this.color1 = new cc.Color(0, 255, 0, 255);
            this.color2 = new cc.Color(0, 0, 255, 255);
        },
    
        map_degbu_draw: function() {
            var x_line = this.map.item_size * 0.5;
            var ypos = this.map.item_size * 0.5;
    
    
            this.new_draw_node.clear();
    
            for (var i = 0; i < this.map.height; i++) {
                var xpos = x_line;
                for (var j = 0; j < this.map.width; j++) {
                    if (this.map.data[i * this.map.width + j] === 0) {
    
                        this.new_draw_node.strokeColor = this.color1;
                        this.new_draw_node.moveTo(xpos, ypos);
                        this.new_draw_node.lineTo(xpos + 1, ypos + 1);
                        this.new_draw_node.stroke();
                    } else {
    
    
                        this.new_draw_node.strokeColor = this.color2;
                        this.new_draw_node.moveTo(xpos, ypos);
                        this.new_draw_node.lineTo(xpos + 1, ypos + 1);
                        this.new_draw_node.stroke();
                    }
    
                    xpos += this.map.item_size;
                }
    
                ypos += this.map.item_size;
            }
    
        },
    
        start: function(){
            this.map = require("game_map_" + this.node.name);
            if (this.is_debug) {
                this.map_degbu_draw();
            }
        },
    
        astar_search: function(src_w, dst_W){
            var src = this.node.convertToNodeSpaceAR(src_w);
            var dst = this.node.convertToNodeSpaceAR(dst_w);
    
            var src_mx = Math.floor((src.x) / this.map.item_size);
            var src_my = Math.floor((src.y) / this.map.item_size);
    
            var dst_mx = Math.floor((dst.x) / this.map.item_size);
            var dst_my = Math.floor((dst.y) / this.map.item_size);        
    
            var path = astar.search(this.map, src_mx, src_my, dst_mx, dst_my);
    
            var world_offset = this.node.convertToWorldSpaceAR(cc.v2(this.map.item_size * 0.5, this.map.item_size * 0.5));
               
               var path_pos = [];
               for(var i = 0; i < path.length; i++){
                   var x = path[i].x * this.map.item_size;
                   var y = path[i].y * this.map.item_size;
    
                   var pos = cc.v2(world_offset.x + x, world_offset.y + y);
                   path_pos.push(pos);
               }
               return path_pos;
        }
    });

    // nav_agent.js 寻路的实际应用
    var nav_map = require("nav_map");
    
    var State = {
        Idle: 0,
        Walk: 1,
    };
    
    cc.Class({
        extends: cc.Component,
    
        properties: {
            // foo: {
            //    default: null,      // The default value will be used only when the component attaching
            //                           to a node for the first time
            //    url: cc.Texture2D,  // optional, default is typeof default
            //    serializable: true, // optional, default is true
            //    visible: true,      // optional, default is true
            //    displayName: 'Foo', // optional
            //    readonly: false,    // optional, default is false
            // },
            // ...
            speed: 100,
    
            game_map: {
                type: nav_map,
                default: null,
            }
        },
    
        // use this for initialization
        onLoad: function() {
            this.state = State.Idle;
            this.walk_total = 0.0;
            this.walk_time = 0;
        },
    
        nav_to_map: function(dst_wpos) {
            var src_wpos = this.node.convertToWorldSpaceAR(cc.v2(0, 0));
    
            this.road_set = this.game_map.astar_search(src_wpos, dst_wpos);
            console.log(this.road_set);
    
            if (!this.road_set || this.road_set.length <= 1) {
                this.state = State.Idle;
                return;
            }
    
            this.walk_next = 1;
            this._walk_to_next();
        },
    
        stop_nav: function() {
            this.state = State.Idle;
        },
    
        _walk_to_next: function() {
            if (!this.road_set || this.walk_next >= this.road_set.length) {
                this.state = State.Idle;
                return;
            }
            var src = this.node.getPosition();
            var dst = this.node.parent.convertToNodeSpaceAR(this.road_set[this.walk_next]);
    
            var dir = dst.sub(src); // 朝向
            var len = dir.mag();
    
            this.vx = (dir.x / len) * this.speed;
            this.vy = (dir.y / len) * this.speed;
    
            this.walk_total = len / this.speed;
            this.walk_time = 0;
            this.state = State.Walk;
        },
        _walk_update: function(dt) {
            if (this.state != State.Walk) {
                return;
            }
    
            this.walk_time += dt;
            if (this.walk_time > this.walk_total) {
                dt -= (this.walk_time - this.walk_total);
            }
    
            var sx = this.vx * dt;
            var sy = this.vy * dt;
    
            this.node.x += sx;
            this.node.y += sy;
    
            if (this.walk_time > this.walk_total) {
                this.walk_next++;
                this._walk_to_next();
            }
        },
    
        update: function(dt) {
            if (this.state == State.Walk) {
                this._walk_update(dt);
            }
        },
    });
    // enemy_AI.js 简单的怪物AI
    var nav_agent = require("nav_agent");
    
    cc.Class({
        extends: cc.Component,
    
        properties: {
            // foo: {
            //    default: null,      // The default value will be used only when the component attaching
            //                           to a node for the first time
            //    url: cc.Texture2D,  // optional, default is typeof default
            //    serializable: true, // optional, default is true
            //    visible: true,      // optional, default is true
            //    displayName: 'Foo', // optional
            //    readonly: false,    // optional, default is false
            // },
            // ...
            think_f_time: 0.25,
    
            search_R: 150, // 发现玩家追击上去
            attack_R: 30, // 攻击玩家。 
    
            player_agent: {
                type: nav_agent,
                default: null,
            }
        },
    
        // use this for initialization
        onLoad: function() {
            this.think_time = 0.0;
            this.agent = this.getComponent("nav_agent");
        },
    
        _do_think_AI: function() {
            var target_pos = this.player_agent.node.getPosition();
            var now_pos = this.node.getPosition();
    
            var dir = target_pos.sub(now_pos);
            var len = dir.mag();
            if (len > this.search_R) { // 停止下来
                this.agent.stop_nav();
                return;
            }
    
            if (len < this.attack_R) {
                this.agent.stop_nav();
                return;
            }
    
            target_pos = this.player_agent.node.convertToWorldSpaceAR(cc.v2(0, 0));
            this.agent.nav_to_map(target_pos);
        },
    
        // called every frame, uncomment this function to activate update callback
        update: function(dt) {
            this.think_time += dt;
            if (this.think_time >= this.think_f_time) { // 决策来做思考
                this.think_time = 0.0;
                this._do_think_AI();
            }
        },
    });
  • 相关阅读:
    TensorFlow安装流程(GPU加速)
    个人总结
    第十六周学习进度
    第十五周学习进度
    第十四周学习进度
    第二次冲刺个人工作总结12
    第二次冲刺个人工作总结11
    第二次冲刺个人工作总结10
    软件工程课堂作业——购买《哈利波特》的最低价格
    第二次冲刺个人工作总结09
  • 原文地址:https://www.cnblogs.com/orxx/p/10559138.html
Copyright © 2020-2023  润新知