• wpa_supplicant软件架构分析


    wpa_supplicant软件架构分析

    1. 启动命令

    wpa supplicant 在启动时,启动命令可以带有很多参数,目前我们的启动命令如下:

    wpa_supplicant /system/bin/wpa_supplicant -Dwext -ieth0 -c/data/wifi/wpa_supplicant.conf -f/data/wifi/wpa_log.txt

    wpa_supplicant对于启动命令带的参数,用了两个数据结构来保存,

    一个是 wpa_params, 另一个是wpa_interface.

    这主要是考虑到wpa_supplicant是可以同时支持多个网络接口的。

    wpa_params数据结构主要记录与网络接口无关的一些参数设置。

    而每一个网络接口就用一个wpa_interface数据结构来记录。

    在启动命令行中,可以用-N来指定将要描述一个新的网络接口,对于一个新的网络接口,可以用下面六个参数描述:

    -i<ifname> : 网络接口名称

    -c<conf>: 配置文件名称

    -C<ctrl_intf>: 控制接口名称

    -D<driver>: 驱动类型

    -p<driver_param>: 驱动参数

    -b<br_ifname>: 桥接口名称

    2. wpa_supplicant 初始化流程

    2.1. main()函数:

    在这个函数中,主要做了四件事。

    a. 解析命令行传进的参数。

    b. 调用wpa_supplicant_init()函数,做wpa_supplicant的初始化工作。

    c. 调用wpa_supplicant_add_iface()函数,增加网络接口。

    d. 调用wpa_supplicant_run()函数,让wpa_supplicant真正的run起来。

    2.2. wpa_supplicant_init()函数:

    a. 打开debug 文件。

    b. 注册EAP peer方法。

    c. 申请wpa_global内存,该数据结构作为统领其他数据结构的一个核心, 主要包括四个部分:

    wpa_supplicant *ifaces   /*每个网络接口都有一个对应的wpa_supplicant数据结构,该指针指向最近加入的一个,在wpa_supplicant数据结构中有指针指向next*/

    wpa_params params   /*启动命令行中带的通用的参数*/

    ctrl_iface_global_priv *ctrl_iface  /*global 的控制接口*/

    ctrl_iface_dbus_priv *dbus_ctrl_iface  /*dbus 的控制接口*/

    d. 设置wpa_global中的wpa_params中的参数。

    e. 调用eloop_init函数将全局变量eloop中的user_data指针指向wpa_global。

    f. 调用wpa_supplicant_global_ctrl_iface_init函数初始化global 控制接口。

    g. 调用wpa_supplicant_dbus_ctrl_iface_init函数初始化dbus 控制接口。

    h. 将该daemon的pid写入pid_file中。

    2.3. wpa_supplicant_add_iface()函数:

    该函数根据启动命令行中带有的参数增加网络接口, 有几个就增加几个。

    a. 因为wpa_supplicant是与网络接口对应的重要的数据结构,所以,首先分配一个wpa_supplicant数据结构的内存。

    b. 调用wpa_supplicant_init_iface() 函数来做网络接口的初始工作,主要包括:

    设置驱动类型,默认是wext;

    读取配置文件,并将其中的信息设置到wpa_supplicant数据结构中的conf 指针指向的数据结构,它是一个wpa_config类型;

    命令行设置的控制接口ctrl_interface和驱动参数driver_param覆盖配置文件里设置,命令行中的优先;

    拷贝网络接口名称和桥接口名称到wpa_config数据结构;

    对于网络配置块有两个链表描述它,一个是 config->ssid,它按照配置文件中的顺序依次挂载在这个链表上,还有一个是pssid,它是一个二级指针,指向一个指针数组,该指针数组按照优先级从高到底的顺序依次保存wpa_ssid指针,相同优先级的在同一链表中挂载。

    c. 调用wpa_supplicant_init_iface2() 函数,主要包括:

    调用wpa_supplicant_init_eapol()函数来初始化eapol;

    调用相应类型的driver的init()函数;

    设置driver的param参数;

    调用wpa_drv_get_ifname()函数获得网络接口的名称,对于wext类型的driver,没有这个接口函数;

    调用wpa_supplicant_init_wpa()函数来初始化wpa,并做相应的初始化工作;

    调用wpa_supplicant_driver_init()函数,来初始化driver接口参数;在该函数的最后,会

    wpa_s->prev_scan_ssid = BROADCAST_SSID_SCAN;

    wpa_supplicant_req_scan(wpa_s, interface_count, 100000);

    来主动发起scan,

    调用wpa_supplicant_ctrl_iface_init()函数,来初始化控制接口;对于UNIX SOCKET这种方式,其本地socket文件是由配置文件里的ctrl_interface参数指定的路径加上网络接口名称;

    2.4. wpa_supplicant_run()函数:

    初始化完成之后,让wpa_supplicant的main event loop run起来。

    在wpa_supplicant中,有许多与外界通信的socket,它们都是需要注册到eloop event模块中的,具体地说,就是在eloop_sock_table中增加一项记录,其中包括了sock_fd, handle, eloop_data, user_data。

    eloop event模块就是将这些socket组织起来,统一管理,然后在eloop_run中利用select机制来管理socket的通信。

    3. Wpa_supplicant提供的接口

    从通信层次上划分,wpa_supplicant提供向上的控制接口 control interface,用于与其他模块(如UI)进行通信,其他模块可以通过control interface 来获取信息或下发命令。Wpa_supplicant通过socket通信机制实现下行接口,与内核进行通信,获取信息或下发命令。

    3.1 上行接口

    Wpa_supplicant提供两种方式的上行接口。一种基于传统dbus机制实现与其他进程间的IPC通信;另一种通过Unix domain socket机制实现进程间的IPC通信。

    3.1.1 Dbus接口

    该接口主要在文件“ctrl_iface_dbus.h”,“ctrl_iface_dbus.c”,“ctrl_iface_dbus_handler.h”和“ctrl_iface_dbus_handler.c”中实现,提供一些基本的控制方法。

    DBusMessage * wpas_dbus_new_invalid_iface_error(DBusMessage *message);

    DBusMessage * wpas_dbus_global_add_interface(DBusMessage *message,

                                            struct wpa_global *global);

    DBusMessage * wpas_dbus_global_remove_interface(DBusMessage *message,

                                              struct wpa_global *global);

    DBusMessage * wpas_dbus_global_get_interface(DBusMessage *message,

                                            struct wpa_global *global);

    DBusMessage * wpas_dbus_global_set_debugparams(DBusMessage *message,

                                              struct wpa_global *global);

    DBusMessage * wpas_dbus_iface_scan(DBusMessage *message,

                                   struct wpa_supplicant *wpa_s);

    DBusMessage * wpas_dbus_iface_scan_results(DBusMessage *message,

                                          struct wpa_supplicant *wpa_s);

    DBusMessage * wpas_dbus_bssid_properties(DBusMessage *message,

                                        struct wpa_supplicant *wpa_s,

                                        struct wpa_scan_res *res);

    DBusMessage * wpas_dbus_iface_capabilities(DBusMessage *message,

                                          struct wpa_supplicant *wpa_s);

    DBusMessage * wpas_dbus_iface_add_network(DBusMessage *message,

                                         struct wpa_supplicant *wpa_s);

    DBusMessage * wpas_dbus_iface_remove_network(DBusMessage *message,

                                            struct wpa_supplicant *wpa_s);

    DBusMessage * wpas_dbus_iface_set_network(DBusMessage *message,

                                         struct wpa_supplicant *wpa_s,

                                         struct wpa_ssid *ssid);

    DBusMessage * wpas_dbus_iface_enable_network(DBusMessage *message,

                                            struct wpa_supplicant *wpa_s,

                                            struct wpa_ssid *ssid);

    DBusMessage * wpas_dbus_iface_disable_network(DBusMessage *message,

                                             struct wpa_supplicant *wpa_s,

                                             struct wpa_ssid *ssid);

    DBusMessage * wpas_dbus_iface_select_network(DBusMessage *message,

                                                 struct wpa_supplicant *wpa_s);

    DBusMessage * wpas_dbus_iface_disconnect(DBusMessage *message,

                                        struct wpa_supplicant *wpa_s);

    DBusMessage * wpas_dbus_iface_set_ap_scan(DBusMessage *message,

                                              struct wpa_supplicant *wpa_s);

    DBusMessage * wpas_dbus_iface_set_smartcard_modules(

           DBusMessage *message, struct wpa_supplicant *wpa_s);

    DBusMessage * wpas_dbus_iface_get_state(DBusMessage *message,

                                       struct wpa_supplicant *wpa_s);

    DBusMessage * wpas_dbus_iface_get_scanning(DBusMessage *message,

                                          struct wpa_supplicant *wpa_s);

    DBusMessage * wpas_dbus_iface_set_blobs(DBusMessage *message,

                                        struct wpa_supplicant *wpa_s);

    DBusMessage * wpas_dbus_iface_remove_blobs(DBusMessage *message,

                                          struct wpa_supplicant *wpa_s);

    3.1.2 Unix domain socket 接口

    该接口主要在文件“wpa_ctrl.h”,“wpa_ctrl.c”,“ctrl_iface_unix.c”,“ctrl_iface.h”和“ctrl_iface.c”实现。

    (1“wpa_ctrl.h”,“wpa_ctrl.c”完成对control interface的封装,对外提供统一的接口。其主要的工作是通过Unix domain socket建立一个control interface 的client结点,与作为server的wpa_supplicant结点通信。

    主要功能函数:

    struct wpa_ctrl * wpa_ctrl_open(const char *ctrl_path);

    /* 建立并初始化一个Unix domain socket的client结点,并与作为server的wpa_supplicant结点绑定 */


    void wpa_ctrl_close(struct wpa_ctrl *ctrl);

    /* 撤销并销毁已建立的Unix domain socket的client结点 */

     

    int wpa_ctrl_request(struct wpa_ctrl *ctrl, const char *cmd, size_t cmd_len,

                       char *reply, size_t *reply_len,

                       void (*msg_cb)(char *msg, size_t len));

     

    /* 用户模块直接调用该函数对wpa_supplicant发送命令并获取所需信息

     * 可以发送的命令如附件1所示 */

    Note:

           Wpa_supplicant 提供两种由外部模块获取信息的方式:一种是外部模块通过发送request 命令然后获取response的问答模式,另一种是wpa_supplicant主动向外部发送event事件,由外部模块监听接收。

     

           一般的常用做法是外部模块通过调用wpa_ctrl_open()两次,建立两个control interface接口,一个为ctrl interface,用于发送命令,获取信息,另一个为monitor interface,用于监听接收来自于wpa_supplicant的event时间。此举可以降低通信的耦合性,避免response和event的相互干扰。

     

    int wpa_ctrl_attach(struct wpa_ctrl *ctrl);

    /* 注册 某个 control interface 作为 monitor interface */

     

    int wpa_ctrl_detach(struct wpa_ctrl *ctrl);

    /* 撤销某个 monitor interface 为 普通的 control interface  */

     

    int wpa_ctrl_pending(struct wpa_ctrl *ctrl);

    /* 判断是否有挂起的event 事件 */

     

    int wpa_ctrl_recv(struct wpa_ctrl *ctrl, char *reply, size_t *reply_len);

    /* 获取挂起的event 事件 */

     

    (2“ctrl_iface_unix.c”实现wpa_supplicant的Unix domain socket通信机制中server结点,完成对client结点的响应。

           其中最主要的两个函数为:

    static void wpa_supplicant_ctrl_iface_receive(int sock, void *eloop_ctx,

                                             void *sock_ctx)

    /* 接收并解析client发送request命令,然后根据不同的命令调用底层不同的处理函数;

     * 然后将获得response结果回馈到 client 结点。

     */

     

    static void wpa_supplicant_ctrl_iface_send(struct ctrl_iface_priv *priv,

                                          int level, const char *buf,

                                          size_t len)

    /* 向注册的monitor interfaces 主动发送event事件 */

     

    (3“ctrl_iface.h”和“ctrl_iface.c”主要实现了各种request命令的底层处理函数。

     

    3.2 下行接口

    Wpa_supplicant提供的下行接口主要用于和kernel(driver)进行通信,下发命令和获取信息。

    Wpa_supplicant下行接口主要包括三种重要的接口:

    1.    PF_INET socket接口,主要用于向kernel 发送ioctl命令,控制并获取相应信息。

    2.    PF_NETLINK socket接口,主要用于接收kernel发送上来的event 事件。

    3.    PF_PACKET socket接口,主要用于向driver传递802.1X报文。

     

    主要涉及到的文件包括:“driver.h”,“drivers.c”,“driver_wext.h”,“driver_wext.c”,“l2_packet.h”和“l2_packet_linux.c”。其中“driver.h”,“drivers.c”,“driver_wext.h”和“driver_wext.c”实现PF_INET socket接口和PF_NETLINK socket接口;“l2_packet.h”和“l2_packet_linux.c”实现PF_PACKET socket接口。

     

    (1“driver.h”,“drivers.c”主要用于封装底层差异对外显示一个相同的wpa_driver_ops接口。Wpa_supplicant可支持atmel, Broadcom, ipw, madwifi, ndis, nl80211, wext等多种驱动。

    其中一个最主要的数据结构为wpa_driver_ops, 其定义了driver相关的各种操作接口。

     

    (2“driver_wext.h”,“driver_wext.c”实现了wext形式的wpa_driver_ops并创建了PF_INET socket接口和PF_NETLINK socket接口,然后通过这两个接口完成与kernel的信息交互。

     

    Wext提供的一个主要数据结构为:

    struct wpa_driver_wext_data {

           void *ctx;

           int event_sock;

           int ioctl_sock;

           int mlme_sock;

           char ifname[IFNAMSIZ + 1];

           int ifindex;

           int ifindex2;

           int if_removed;

           u8 *assoc_req_ies;

           size_t assoc_req_ies_len;

           u8 *assoc_resp_ies;

           size_t assoc_resp_ies_len;

           struct wpa_driver_capa capa;

           int has_capability;

           int we_version_compiled;

     

           /* for set_auth_alg fallback */

           int use_crypt;

           int auth_alg_fallback;

     

           int operstate;

     

           char mlmedev[IFNAMSIZ + 1];

     

           int scan_complete_events;

    };

    其中event_sock 为PF_NETLINK socket接口,ioctl_sock为PF_INET socket借口。

     

    Driver_wext.c实现了大量底层处理函数用于实现wpa_driver_ops操作参数,其中比较重要的有:

    void * wpa_driver_wext_init(void *ctx, const char *ifname);

    /* 初始化wpa_driver_wext_data 数据结构,并创建PF_NETLINK socket和 PF_INET socket 接口 */

     

    void wpa_driver_wext_deinit(void *priv);

    /* 销毁wpa_driver_wext_data 数据结构,PF_NETLINK socket和 PF_INET socket 接口 */

     

    static void wpa_driver_wext_event_receive(int sock, void *eloop_ctx,

                                         void *sock_ctx);

    /* 处理kernel主动发送的event事件的 callback 函数 */

     

    最后,将实现的操作函数映射到一个全局的wpa_driver_ops类型数据结构 wpa_driver_wext_ops中。

     

    const struct wpa_driver_ops wpa_driver_wext_ops = {

           .name = "wext",

           .desc = "Linux wireless extensions (generic)",

           .get_bssid = wpa_driver_wext_get_bssid,

           .get_ssid = wpa_driver_wext_get_ssid,

           .set_wpa = wpa_driver_wext_set_wpa,

           .set_key = wpa_driver_wext_set_key,

           .set_countermeasures = wpa_driver_wext_set_countermeasures,

           .set_drop_unencrypted = wpa_driver_wext_set_drop_unencrypted,

           .scan = wpa_driver_wext_scan,

           .get_scan_results2 = wpa_driver_wext_get_scan_results,

           .deauthenticate = wpa_driver_wext_deauthenticate,

           .disassociate = wpa_driver_wext_disassociate,

           .set_mode = wpa_driver_wext_set_mode,

           .associate = wpa_driver_wext_associate,

           .set_auth_alg = wpa_driver_wext_set_auth_alg,

           .init = wpa_driver_wext_init,

           .deinit = wpa_driver_wext_deinit,

           .add_pmkid = wpa_driver_wext_add_pmkid,

           .remove_pmkid = wpa_driver_wext_remove_pmkid,

           .flush_pmkid = wpa_driver_wext_flush_pmkid,

           .get_capa = wpa_driver_wext_get_capa,

           .set_operstate = wpa_driver_wext_set_operstate,

    };

     

    (3“l2_packet.h”和“l2_packet_linux.c”主要用于实现PF_PACKET socket接口,通过该接口,wpa_supplicant可以直接将802.1X packet发送到L2层,而不经过TCP/IP协议栈。

     

    其中主要的功能函数为:

    struct l2_packet_data * l2_packet_init(

           const char *ifname, const u8 *own_addr, unsigned short protocol,

           void (*rx_callback)(void *ctx, const u8 *src_addr,

                             const u8 *buf, size_t len),

           void *rx_callback_ctx, int l2_hdr);

    /* 创建并初始化PF_PACKET socket接口,其中rx_callback 为从L2接收到的packet 处理callback函数 */

     

    void l2_packet_deinit(struct l2_packet_data *l2);

    /* 销毁 PF_PACKET socket接口 */

     

    int l2_packet_send(struct l2_packet_data *l2, const u8 *dst_addr, u16 proto,

                     const u8 *buf, size_t len);

    /* L2层packet发送函数,wpa_supplicant用此发送L2层 802.1X packet  */

     

    static void l2_packet_receive(int sock, void *eloop_ctx, void *sock_ctx);

    /*  L2层packet接收函数,接收来自L2层数据后,将其发送到上层  */

    4. Control interface commands

           PING

           MIB

           STATUS

           STATUS-VERBOSE

           PMKSA

           SET <variable> <valus>

           LOGON

           LOGOFF

           REASSOCIATE

           RECONNECT

           PREAUTH <BSSID>

           ATTACH

           DETACH

           LEVEL <debug level>

           RECONFIGURE

           TERMINATE

           BSSID <network id> <BSSID>

           LIST_NETWORKS

           DISCONNECT

           SCAN

           SCAN_RESULTS

           BSS

           SELECT_NETWORK <network id>

           ENABLE_NETWORK <network id>

           DISABLE_NETWORK <network id>

           ADD_NETWORK

           REMOVE_NETWORK <network id>

           SET_NETWORK <network id> <variable> <value>

           GET_NETWORK <network id> <variable>

           SAVE_CONFIG


    ----------------------------------------

    Linux无线网络设置(wpa_supplicant的使用)

    主机环境:Gentoo Linux 3.1.10
     WPA Supplicant工具包可以让您连接到那些使用WPA的AP。因为还只是beta版,所以它的配置方法仍会常常变化——尽管如此,在大部分情况下它已经能很好的工作。
     安装上wap_supplicant后可以通过修改/etc/wpa_supplicant/wpa_supplicant.conf来进行配置无线接入点网络
     下面是一个配置文件的实例。
     
     # 请不要修改下面这一行内容,否则将不能正常工作
     ctrl_interface=/var/run/wpa_supplicant
     
     # 确保只有root用户能读取WPA的配置
     ctrl_interface_group=0
     
     # 使用wpa_supplicant来扫描和选择AP
     ap_scan=1
     
     # 简单的情形:WPA-PSk密码验证方式,PSK是ASCII密码短语,所有合法的加密方式都允许连接
     network={
     ssid="simple"
     psk="very secret passphrase"
     # 优先级越高,就能越早匹配到。
     priority=5
     }
     
     # 与前面的设置相同,但要求对特定的SSID进行扫描(针对那些拒绝广播SSID的AP)
     network={
     ssid="second ssid"
     scan_ssid=1
     psk="very secret passphrase"
     priority=2
     }
     
     # 仅使用WPA-PSK方式。允许使用任何合法的加密方式的组合
     network={
     ssid="example"
     proto=WPA
     key_mgmt=WPA-PSK
     pairwise=CCMP TKIP
     group=CCMP TKIP WEP104 WEP40
     psk=06b4be19da289f475aa46a33cb793029d4ab3db7a23ee92382eb0106c72ac7bb
     priority=2
     }
     
     # 明文连接方式(不使用WPA和IEEE802.1X)
     network={
     ssid="plaintext-test"
     key_mgmt=NONE
     }
     
     # 共享WEP秘钥连接方式(不使用WPA和IEEE802.1X)
     network={
     ssid="static-wep-test"
     key_mgmt=NONE
     wep_key0="abcde"
     wep_key1=0102030405
     wep_key2="1234567890123"
     wep_tx_keyidx=0
     priority=5
     }
     
     # 共享WEP秘钥连接方式(无WPA和IEEE802.1X),使用共享秘钥IEEE802.11验证方式
     network={
     ssid="static-wep-test2"
     key_mgmt=NONE
     wep_key0="abcde"
     wep_key1=0102030405
     wep_key2="1234567890123"
     wep_tx_keyidx=0
     priority=5
     auth_alg=SHARED
     }
     
     # 在IBSS/ad-hoc网络中使用WPA-None/TKIP
     network={
     ssid="test adhoc"
     mode=1
     proto=WPA
     key_mgmt=WPA-NONE
     pairwise=NONE
     group=TKIP
     psk="secret passphrase"
     }
     
     --
     下面是我的配置文件
     
     ctrl_interface=/var/run/wpa_supplicant
     ap_scan=1
     
     #Home Network
     network={
         psk="yming0221"
         priority=1
         ssid=79616E277320776972656C657373
         mode=0
         bssid=E0:05:C5:17:F8:2C
         key_mgmt=WPA-PSK
     }
     #
     network={
         ssid="351471azjlb"
         psk="CCTV1-CCTV2-KTV-1987"
         priority=2
     }
     
     然后重启wlan0连接

     /etc/init.d/net.wlan0 restart



    ======================================================================================

    常用命令:

    wpa_supplicant -Dwext -iwlan0 -c配置文件.conf -C/var/run/wpa_supplicant -B

    -B: 后台运行

    -c: 配置文件

    -C:unix socket 名称

    -i:监听的接口

    -D:使用的驱动名, 一般为wext或者 nl80211



    wpa_passphrase
                  创建 wpa_supplicant.conf 的工具

            wpa_passphrase [ ssid ] [ passphrase ]  > conf 文件


    wpa_cli

        wpa_cli  [  -p path to ctrl sockets ] [ -i ifname ] [ -hvB ] [ -a action file ] [ -P pid file ] [command ... ]

        wpa_cli -i wlan0     |

                                    | list_network

                                    | remove_netwok

                                    | add_network

                                    | set_network %d    | ssid "名称"

                                                                  | key_mgmt 类型(NONE, )

                                                                  | wep_key0 密码

                                                                  | psk 密码

                                                                  | wep_tx_keyidx 0

                                    | select_network %d

                                    | enable_network %d

                                    | save_config

                                    | scan

                                    | scan_results

                                    | terminate


    wpa_cli用法

    1: run wpa_supplicant first

    use the following command:

           wpa_supplicant -Dwext -iwlan0 -C/data/system/wpa_supplicant -c/data/misc/wifi/wpa_supplicant.conf

          (use “ps”to make sure wpa_supplicant is running )

     

    2: Run the command line tool wpa_cli to connect wifi

           wpa_cli -p/data/system/wpa_supplicant -iwlan0

           Then , it will let you set network interactively

     

           some common command:

           >scan = to scan the neighboring AP

           >scan_results = show the scan results

           >status = check out the current connection information

           >terminate = terminate wpa_supplicant

           >quit = exit wpa_cli

           >add_network = it will return a network id to you

           >set_network <network id> <variable> <value> = set network variables (shows

    list of variables when run without arguments), success will return OK, or will return Fail

           >select_network <network id> = select a network (disable others)

           >disable_network <network id> = disable a network

           >enable_network <network id> = enable a network

     

    3: example

     

           for AP that doesn`t have encryption

                  >add_network      (It will display a network id for you, assume it returns 0)

                  >set_network 0 ssid “666”

                  >set_network 0 key_mgmt NONE

                  >enable_network 0

                  >quit

           if normal, we have connectted to the AP “666”, now you need a IP to access internet, for example:

                  dhcpcd wlan0

                  if everything is ok, it will get an IP & can access internet

     

           for AP that has WEP

                  >add_network      (assume returns 1)

                  >set_network 1 ssid “666”

                  >set_network 1 key_mgmt NONE

                  >set_network 1 wep_key0 “your ap passwork”(if usting ASCII, it need double quotation marks, if using hex, then don`t need the double quotation marks)

                  >set_network 1 wep_tx_keyidx 0

                  >select_network 1  (optional, remember, if you are connecting with another AP, you should select it to disable the another)

                  >enable_network 1

                  and then ,get an IP to access internet

     

           for AP that has WPA-PSK/WPA2-PSK

                  >add_network      (assume returns 2)

                  >set_network 2 ssid “666”

                  >set_network 2 psk “your pre-shared key”

                  >select_network 2  (optional, remember, if you are connecting with another AP, you should select it to disable the another)

                  >enable_network 2

                  there is still some others options to be set, but wpa_supplicant will choose the default for you, the default will include all we need to set

                  and then ,get an IP to access internet

     

           for Hidden AP(补充)

            原则上应该只要在上面的基础上去set_network netid scan_ssid 1即可,测试过无加密的Hidden AP,WEP/WPA/WPA2应该道理一样

    =====================  wpa_supplicant.conf 官方描述(其中包含了 set_network 子命令中所带的参数与取值范围) ========================================

    ##### Example wpa_supplicant configuration file ###############################
    #
    # This file describes configuration file format and lists all available option.
    # Please also take a look at simpler configuration examples in 'examples'
    # subdirectory.
    #
    # Empty lines and lines starting with # are ignored

    # NOTE! This file may contain password information and should probably be made
    # readable only by root user on multiuser systems.

    # Note: All file paths in this configuration file should use full (absolute,
    # not relative to working directory) path in order to allow working directory
    # to be changed. This can happen if wpa_supplicant is run in the background.

    # Whether to allow wpa_supplicant to update (overwrite) configuration
    #
    # This option can be used to allow wpa_supplicant to overwrite configuration
    # file whenever configuration is changed (e.g., new network block is added with
    # wpa_cli or wpa_gui, or a password is changed). This is required for
    # wpa_cli/wpa_gui to be able to store the configuration changes permanently.
    # Please note that overwriting configuration file will remove the comments from
    # it.
    #update_config=1

    # global configuration (shared by all network blocks)
    #
    # Parameters for the control interface. If this is specified, wpa_supplicant
    # will open a control interface that is available for external programs to
    # manage wpa_supplicant. The meaning of this string depends on which control
    # interface mechanism is used. For all cases, the existance of this parameter
    # in configuration is used to determine whether the control interface is
    # enabled.
    #
    # For UNIX domain sockets (default on Linux and BSD): This is a directory that
    # will be created for UNIX domain sockets for listening to requests from
    # external programs (CLI/GUI, etc.) for status information and configuration.
    # The socket file will be named based on the interface name, so multiple
    # wpa_supplicant processes can be run at the same time if more than one
    # interface is used.
    # /var/run/wpa_supplicant is the recommended directory for sockets and by
    # default, wpa_cli will use it when trying to connect with wpa_supplicant.
    #
    # Access control for the control interface can be configured by setting the
    # directory to allow only members of a group to use sockets. This way, it is
    # possible to run wpa_supplicant as root (since it needs to change network
    # configuration and open raw sockets) and still allow GUI/CLI components to be
    # run as non-root users. However, since the control interface can be used to
    # change the network configuration, this access needs to be protected in many
    # cases. By default, wpa_supplicant is configured to use gid 0 (root). If you
    # want to allow non-root users to use the control interface, add a new group
    # and change this value to match with that group. Add users that should have
    # control interface access to this group. If this variable is commented out or
    # not included in the configuration file, group will not be changed from the
    # value it got by default when the directory or socket was created.
    #
    # When configuring both the directory and group, use following format:
    # DIR=/var/run/wpa_supplicant GROUP=wheel
    # DIR=/var/run/wpa_supplicant GROUP=0
    # (group can be either group name or gid)
    #
    # For UDP connections (default on Windows): The value will be ignored. This
    # variable is just used to select that the control interface is to be created.
    # The value can be set to, e.g., udp (ctrl_interface=udp)
    #
    # For Windows Named Pipe: This value can be used to set the security descriptor
    # for controlling access to the control interface. Security descriptor can be
    # set using Security Descriptor String Format (see http://msdn.microsoft.com/
    # library/default.asp?url=/library/en-us/secauthz/security/
    # security_descriptor_string_format.asp). The descriptor string needs to be
    # prefixed with SDDL=. For example, ctrl_interface=SDDL=D: would set an empty
    # DACL (which will reject all connections). See README-Windows.txt for more
    # information about SDDL string format.
    #
    ctrl_interface=/var/run/wpa_supplicant

    # IEEE 802.1X/EAPOL version
    # wpa_supplicant is implemented based on IEEE Std 802.1X-2004 which defines
    # EAPOL version 2. However, there are many APs that do not handle the new
    # version number correctly (they seem to drop the frames completely). In order
    # to make wpa_supplicant interoperate with these APs, the version number is set
    # to 1 by default. This configuration value can be used to set it to the new
    # version (2).
    eapol_version=1

    # AP scanning/selection
    # By default, wpa_supplicant requests driver to perform AP scanning and then
    # uses the scan results to select a suitable AP. Another alternative is to
    # allow the driver to take care of AP scanning and selection and use
    # wpa_supplicant just to process EAPOL frames based on IEEE 802.11 association
    # information from the driver.
    # 1: wpa_supplicant initiates scanning and AP selection
    # 0: driver takes care of scanning, AP selection, and IEEE 802.11 association
    #    parameters (e.g., WPA IE generation); this mode can also be used with
    #    non-WPA drivers when using IEEE 802.1X mode; do not try to associate with
    #    APs (i.e., external program needs to control association). This mode must
    #    also be used when using wired Ethernet drivers.
    # 2: like 0, but associate with APs using security policy and SSID (but not
    #    BSSID); this can be used, e.g., with ndiswrapper and NDIS drivers to
    #    enable operation with hidden SSIDs and optimized roaming; in this mode,
    #    the network blocks in the configuration file are tried one by one until
    #    the driver reports successful association; each network block should have
    #    explicit security policy (i.e., only one option in the lists) for
    #    key_mgmt, pairwise, group, proto variables
    ap_scan=1

    # EAP fast re-authentication
    # By default, fast re-authentication is enabled for all EAP methods that
    # support it. This variable can be used to disable fast re-authentication.
    # Normally, there is no need to disable this.
    fast_reauth=1

    # OpenSSL Engine support
    # These options can be used to load OpenSSL engines.
    # The two engines that are supported currently are shown below:
    # They are both from the opensc project (http://www.opensc.org/)
    # By default no engines are loaded.
    # make the opensc engine available
    #opensc_engine_path=/usr/lib/opensc/engine_opensc.so
    # make the pkcs11 engine available
    #pkcs11_engine_path=/usr/lib/opensc/engine_pkcs11.so
    # configure the path to the pkcs11 module required by the pkcs11 engine
    #pkcs11_module_path=/usr/lib/pkcs11/opensc-pkcs11.so

    # Dynamic EAP methods
    # If EAP methods were built dynamically as shared object files, they need to be
    # loaded here before being used in the network blocks. By default, EAP methods
    # are included statically in the build, so these lines are not needed
    #load_dynamic_eap=/usr/lib/wpa_supplicant/eap_tls.so
    #load_dynamic_eap=/usr/lib/wpa_supplicant/eap_md5.so

    # Driver interface parameters
    # This field can be used to configure arbitrary driver interace parameters. The
    # format is specific to the selected driver interface. This field is not used
    # in most cases.
    #driver_param="field=value"

    # Country code
    # The ISO/IEC alpha2 country code for the country in which this device is
    # currently operating.
    #country=US

    # Maximum lifetime for PMKSA in seconds; default 43200
    #dot11RSNAConfigPMKLifetime=43200
    # Threshold for reauthentication (percentage of PMK lifetime); default 70
    #dot11RSNAConfigPMKReauthThreshold=70
    # Timeout for security association negotiation in seconds; default 60
    #dot11RSNAConfigSATimeout=60

    # Wi-Fi Protected Setup (WPS) parameters

    # Universally Unique IDentifier (UUID; see RFC 4122) of the device
    # If not configured, UUID will be generated based on the local MAC address.
    #uuid=12345678-9abc-def0-1234-56789abcdef0

    # Device Name
    # User-friendly description of device; up to 32 octets encoded in UTF-8
    #device_name=Wireless Client

    # Manufacturer
    # The manufacturer of the device (up to 64 ASCII characters)
    #manufacturer=Company

    # Model Name
    # Model of the device (up to 32 ASCII characters)
    #model_name=cmodel

    # Model Number
    # Additional device description (up to 32 ASCII characters)
    #model_number=123

    # Serial Number
    # Serial number of the device (up to 32 characters)
    #serial_number=12345

    # Primary Device Type
    # Used format: <categ>-<OUI>-<subcateg>
    # categ = Category as an integer value
    # OUI = OUI and type octet as a 4-octet hex-encoded value; 0050F204 for
    #       default WPS OUI
    # subcateg = OUI-specific Sub Category as an integer value
    # Examples:
    #   1-0050F204-1 (Computer / PC)
    #   1-0050F204-2 (Computer / Server)
    #   5-0050F204-1 (Storage / NAS)
    #   6-0050F204-1 (Network Infrastructure / AP)
    #device_type=1-0050F204-1

    # OS Version
    # 4-octet operating system version number (hex string)
    #os_version=01020300

    # Credential processing
    #   0 = process received credentials internally (default)
    #   1 = do not process received credentials; just pass them over ctrl_iface to
    #    external program(s)
    #   2 = process received credentials internally and pass them over ctrl_iface
    #    to external program(s)
    #wps_cred_processing=0

    # network block
    #
    # Each network (usually AP's sharing the same SSID) is configured as a separate
    # block in this configuration file. The network blocks are in preference order
    # (the first match is used).
    #
    # network block fields:
    #
    # disabled:
    #    0 = this network can be used (default)
    #    1 = this network block is disabled (can be enabled through ctrl_iface,
    #        e.g., with wpa_cli or wpa_gui)
    #
    # id_str: Network identifier string for external scripts. This value is passed
    #    to external action script through wpa_cli as WPA_ID_STR environment
    #    variable to make it easier to do network specific configuration.
    #
    # ssid: SSID (mandatory); either as an ASCII string with double quotation or
    #    as hex string; network name
    #
    # scan_ssid:
    #    0 = do not scan this SSID with specific Probe Request frames (default)
    #    1 = scan with SSID-specific Probe Request frames (this can be used to
    #        find APs that do not accept broadcast SSID or use multiple SSIDs;
    #        this will add latency to scanning, so enable this only when needed)
    #
    # bssid: BSSID (optional); if set, this network block is used only when
    #    associating with the AP using the configured BSSID
    #
    # priority: priority group (integer)
    # By default, all networks will get same priority group (0). If some of the
    # networks are more desirable, this field can be used to change the order in
    # which wpa_supplicant goes through the networks when selecting a BSS. The
    # priority groups will be iterated in decreasing priority (i.e., the larger the
    # priority value, the sooner the network is matched against the scan results).
    # Within each priority group, networks will be selected based on security
    # policy, signal strength, etc.
    # Please note that AP scanning with scan_ssid=1 and ap_scan=2 mode are not
    # using this priority to select the order for scanning. Instead, they try the
    # networks in the order that used in the configuration file.
    #
    # mode: IEEE 802.11 operation mode
    # 0 = infrastructure (Managed) mode, i.e., associate with an AP (default)
    # 1 = IBSS (ad-hoc, peer-to-peer)
    # Note: IBSS can only be used with key_mgmt NONE (plaintext and static WEP)
    # and key_mgmt=WPA-NONE (fixed group key TKIP/CCMP). In addition, ap_scan has
    # to be set to 2 for IBSS. WPA-None requires following network block options:
    # proto=WPA, key_mgmt=WPA-NONE, pairwise=NONE, group=TKIP (or CCMP, but not
    # both), and psk must also be set.
    #
    # frequency: Channel frequency in megahertz (MHz) for IBSS, e.g.,
    # 2412 = IEEE 802.11b/g channel 1. This value is used to configure the initial
    # channel for IBSS (adhoc) networks. It is ignored in the infrastructure mode.
    # In addition, this value is only used by the station that creates the IBSS. If
    # an IBSS network with the configured SSID is already present, the frequency of
    # the network will be used instead of this configured value.
    #
    # proto: list of accepted protocols
    # WPA = WPA/IEEE 802.11i/D3.0
    # RSN = WPA2/IEEE 802.11i (also WPA2 can be used as an alias for RSN)
    # If not set, this defaults to: WPA RSN
    #
    # key_mgmt: list of accepted authenticated key management protocols
    # WPA-PSK = WPA pre-shared key (this requires 'psk' field)
    # WPA-EAP = WPA using EAP authentication
    # IEEE8021X = IEEE 802.1X using EAP authentication and (optionally) dynamically
    #    generated WEP keys
    # NONE = WPA is not used; plaintext or static WEP could be used
    # WPA-PSK-SHA256 = Like WPA-PSK but using stronger SHA256-based algorithms
    # WPA-EAP-SHA256 = Like WPA-EAP but using stronger SHA256-based algorithms
    # If not set, this defaults to: WPA-PSK WPA-EAP
    #
    # auth_alg: list of allowed IEEE 802.11 authentication algorithms
    # OPEN = Open System authentication (required for WPA/WPA2)
    # SHARED = Shared Key authentication (requires static WEP keys)
    # LEAP = LEAP/Network EAP (only used with LEAP)
    # If not set, automatic selection is used (Open System with LEAP enabled if
    # LEAP is allowed as one of the EAP methods).
    #
    # pairwise: list of accepted pairwise (unicast) ciphers for WPA
    # CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0]
    # TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0]
    # NONE = Use only Group Keys (deprecated, should not be included if APs support
    #    pairwise keys)
    # If not set, this defaults to: CCMP TKIP
    #
    # group: list of accepted group (broadcast/multicast) ciphers for WPA
    # CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0]
    # TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0]
    # WEP104 = WEP (Wired Equivalent Privacy) with 104-bit key
    # WEP40 = WEP (Wired Equivalent Privacy) with 40-bit key [IEEE 802.11]
    # If not set, this defaults to: CCMP TKIP WEP104 WEP40
    #
    # psk: WPA preshared key; 256-bit pre-shared key
    # The key used in WPA-PSK mode can be entered either as 64 hex-digits, i.e.,
    # 32 bytes or as an ASCII passphrase (in which case, the real PSK will be
    # generated using the passphrase and SSID). ASCII passphrase must be between
    # 8 and 63 characters (inclusive).
    # This field is not needed, if WPA-EAP is used.
    # Note: Separate tool, wpa_passphrase, can be used to generate 256-bit keys
    # from ASCII passphrase. This process uses lot of CPU and wpa_supplicant
    # startup and reconfiguration time can be optimized by generating the PSK only
    # only when the passphrase or SSID has actually changed.
    #
    # eapol_flags: IEEE 802.1X/EAPOL options (bit field)
    # Dynamic WEP key required for non-WPA mode
    # bit0 (1): require dynamically generated unicast WEP key
    # bit1 (2): require dynamically generated broadcast WEP key
    #     (3 = require both keys; default)
    # Note: When using wired authentication, eapol_flags must be set to 0 for the
    # authentication to be completed successfully.
    #
    # mixed_cell: This option can be used to configure whether so called mixed
    # cells, i.e., networks that use both plaintext and encryption in the same
    # SSID, are allowed when selecting a BSS form scan results.
    # 0 = disabled (default)
    # 1 = enabled
    #
    # proactive_key_caching:
    # Enable/disable opportunistic PMKSA caching for WPA2.
    # 0 = disabled (default)
    # 1 = enabled
    #
    # wep_key0..3: Static WEP key (ASCII in double quotation, e.g. "abcde" or
    # hex without quotation, e.g., 0102030405)
    # wep_tx_keyidx: Default WEP key index (TX) (0..3)
    #
    # peerkey: Whether PeerKey negotiation for direct links (IEEE 802.11e DLS) is
    # allowed. This is only used with RSN/WPA2.
    # 0 = disabled (default)
    # 1 = enabled
    #peerkey=1
    #
    # wpa_ptk_rekey: Maximum lifetime for PTK in seconds. This can be used to
    # enforce rekeying of PTK to mitigate some attacks against TKIP deficiencies.
    #
    # Following fields are only used with internal EAP implementation.
    # eap: space-separated list of accepted EAP methods
    #    MD5 = EAP-MD5 (unsecure and does not generate keying material ->
    #            cannot be used with WPA; to be used as a Phase 2 method
    #            with EAP-PEAP or EAP-TTLS)
    #       MSCHAPV2 = EAP-MSCHAPv2 (cannot be used separately with WPA; to be used
    #        as a Phase 2 method with EAP-PEAP or EAP-TTLS)
    #       OTP = EAP-OTP (cannot be used separately with WPA; to be used
    #        as a Phase 2 method with EAP-PEAP or EAP-TTLS)
    #       GTC = EAP-GTC (cannot be used separately with WPA; to be used
    #        as a Phase 2 method with EAP-PEAP or EAP-TTLS)
    #    TLS = EAP-TLS (client and server certificate)
    #    PEAP = EAP-PEAP (with tunnelled EAP authentication)
    #    TTLS = EAP-TTLS (with tunnelled EAP or PAP/CHAP/MSCHAP/MSCHAPV2
    #             authentication)
    #    If not set, all compiled in methods are allowed.
    #
    # identity: Identity string for EAP
    #    This field is also used to configure user NAI for
    #    EAP-PSK/PAX/SAKE/GPSK.
    # anonymous_identity: Anonymous identity string for EAP (to be used as the
    #    unencrypted identity with EAP types that support different tunnelled
    #    identity, e.g., EAP-TTLS)
    # password: Password string for EAP. This field can include either the
    #    plaintext password (using ASCII or hex string) or a NtPasswordHash
    #    (16-byte MD4 hash of password) in hash:<32 hex digits> format.
    #    NtPasswordHash can only be used when the password is for MSCHAPv2 or
    #    MSCHAP (EAP-MSCHAPv2, EAP-TTLS/MSCHAPv2, EAP-TTLS/MSCHAP, LEAP).
    #    EAP-PSK (128-bit PSK), EAP-PAX (128-bit PSK), and EAP-SAKE (256-bit
    #    PSK) is also configured using this field. For EAP-GPSK, this is a
    #    variable length PSK.
    # ca_cert: File path to CA certificate file (PEM/DER). This file can have one
    #    or more trusted CA certificates. If ca_cert and ca_path are not
    #    included, server certificate will not be verified. This is insecure and
    #    a trusted CA certificate should always be configured when using
    #    EAP-TLS/TTLS/PEAP. Full path should be used since working directory may
    #    change when wpa_supplicant is run in the background.
    #    On Windows, trusted CA certificates can be loaded from the system
    #    certificate store by setting this to cert_store://<name>, e.g.,
    #    ca_cert="cert_store://CA" or ca_cert="cert_store://ROOT".
    #    Note that when running wpa_supplicant as an application, the user
    #    certificate store (My user account) is used, whereas computer store
    #    (Computer account) is used when running wpasvc as a service.
    # ca_path: Directory path for CA certificate files (PEM). This path may
    #    contain multiple CA certificates in OpenSSL format. Common use for this
    #    is to point to system trusted CA list which is often installed into
    #    directory like /etc/ssl/certs. If configured, these certificates are
    #    added to the list of trusted CAs. ca_cert may also be included in that
    #    case, but it is not required.
    # client_cert: File path to client certificate file (PEM/DER)
    #    Full path should be used since working directory may change when
    #    wpa_supplicant is run in the background.
    #    Alternatively, a named configuration blob can be used by setting this
    #    to blob://<blob name>.
    # private_key: File path to client private key file (PEM/DER/PFX)
    #    When PKCS#12/PFX file (.p12/.pfx) is used, client_cert should be
    #    commented out. Both the private key and certificate will be read from
    #    the PKCS#12 file in this case. Full path should be used since working
    #    directory may change when wpa_supplicant is run in the background.
    #    Windows certificate store can be used by leaving client_cert out and
    #    configuring private_key in one of the following formats:
    #    cert://substring_to_match
    #    hash://certificate_thumbprint_in_hex
    #    for example: private_key="hash://63093aa9c47f56ae88334c7b65a4"
    #    Note that when running wpa_supplicant as an application, the user
    #    certificate store (My user account) is used, whereas computer store
    #    (Computer account) is used when running wpasvc as a service.
    #    Alternatively, a named configuration blob can be used by setting this
    #    to blob://<blob name>.
    # private_key_passwd: Password for private key file (if left out, this will be
    #    asked through control interface)
    # dh_file: File path to DH/DSA parameters file (in PEM format)
    #    This is an optional configuration file for setting parameters for an
    #    ephemeral DH key exchange. In most cases, the default RSA
    #    authentication does not use this configuration. However, it is possible
    #    setup RSA to use ephemeral DH key exchange. In addition, ciphers with
    #    DSA keys always use ephemeral DH keys. This can be used to achieve
    #    forward secrecy. If the file is in DSA parameters format, it will be
    #    automatically converted into DH params.
    # subject_match: Substring to be matched against the subject of the
    #    authentication server certificate. If this string is set, the server
    #    sertificate is only accepted if it contains this string in the subject.
    #    The subject string is in following format:
    #    /C=US/ST=CA/L=San Francisco/CN=Test AS/emailAddress=as@example.com
    # altsubject_match: Semicolon separated string of entries to be matched against
    #    the alternative subject name of the authentication server certificate.
    #    If this string is set, the server sertificate is only accepted if it
    #    contains one of the entries in an alternative subject name extension.
    #    altSubjectName string is in following format: TYPE:VALUE
    #    Example: EMAIL:server@example.com
    #    Example: DNS:server.example.com;DNS:server2.example.com
    #    Following types are supported: EMAIL, DNS, URI
    # phase1: Phase1 (outer authentication, i.e., TLS tunnel) parameters
    #    (string with field-value pairs, e.g., "peapver=0" or
    #    "peapver=1 peaplabel=1")
    #    'peapver' can be used to force which PEAP version (0 or 1) is used.
    #    'peaplabel=1' can be used to force new label, "client PEAP encryption",
    #    to be used during key derivation when PEAPv1 or newer. Most existing
    #    PEAPv1 implementation seem to be using the old label, "client EAP
    #    encryption", and wpa_supplicant is now using that as the default value.
    #    Some servers, e.g., Radiator, may require peaplabel=1 configuration to
    #    interoperate with PEAPv1; see eap_testing.txt for more details.
    #    'peap_outer_success=0' can be used to terminate PEAP authentication on
    #    tunneled EAP-Success. This is required with some RADIUS servers that
    #    implement draft-josefsson-pppext-eap-tls-eap-05.txt (e.g.,
    #    Lucent NavisRadius v4.4.0 with PEAP in "IETF Draft 5" mode)
    #    include_tls_length=1 can be used to force wpa_supplicant to include
    #    TLS Message Length field in all TLS messages even if they are not
    #    fragmented.
    #    sim_min_num_chal=3 can be used to configure EAP-SIM to require three
    #    challenges (by default, it accepts 2 or 3)
    #    result_ind=1 can be used to enable EAP-SIM and EAP-AKA to use
    #    protected result indication.
    #    'crypto_binding' option can be used to control PEAPv0 cryptobinding
    #    behavior:
    #     * 0 = do not use cryptobinding (default)
    #     * 1 = use cryptobinding if server supports it
    #     * 2 = require cryptobinding
    #    EAP-WSC (WPS) uses following options: pin=<Device Password> or
    #    pbc=1.
    # phase2: Phase2 (inner authentication with TLS tunnel) parameters
    #    (string with field-value pairs, e.g., "auth=MSCHAPV2" for EAP-PEAP or
    #    "autheap=MSCHAPV2 autheap=MD5" for EAP-TTLS)
    # Following certificate/private key fields are used in inner Phase2
    # authentication when using EAP-TTLS or EAP-PEAP.
    # ca_cert2: File path to CA certificate file. This file can have one or more
    #    trusted CA certificates. If ca_cert2 and ca_path2 are not included,
    #    server certificate will not be verified. This is insecure and a trusted
    #    CA certificate should always be configured.
    # ca_path2: Directory path for CA certificate files (PEM)
    # client_cert2: File path to client certificate file
    # private_key2: File path to client private key file
    # private_key2_passwd: Password for private key file
    # dh_file2: File path to DH/DSA parameters file (in PEM format)
    # subject_match2: Substring to be matched against the subject of the
    #    authentication server certificate.
    # altsubject_match2: Substring to be matched against the alternative subject
    #    name of the authentication server certificate.
    #
    # fragment_size: Maximum EAP fragment size in bytes (default 1398).
    #    This value limits the fragment size for EAP methods that support
    #    fragmentation (e.g., EAP-TLS and EAP-PEAP). This value should be set
    #    small enough to make the EAP messages fit in MTU of the network
    #    interface used for EAPOL. The default value is suitable for most
    #    cases.
    #
    # EAP-FAST variables:
    # pac_file: File path for the PAC entries. wpa_supplicant will need to be able
    #    to create this file and write updates to it when PAC is being
    #    provisioned or refreshed. Full path to the file should be used since
    #    working directory may change when wpa_supplicant is run in the
    #    background. Alternatively, a named configuration blob can be used by
    #    setting this to blob://<blob name>
    # phase1: fast_provisioning option can be used to enable in-line provisioning
    #         of EAP-FAST credentials (PAC):
    #         0 = disabled,
    #         1 = allow unauthenticated provisioning,
    #         2 = allow authenticated provisioning,
    #         3 = allow both unauthenticated and authenticated provisioning
    #    fast_max_pac_list_len=<num> option can be used to set the maximum
    #        number of PAC entries to store in a PAC list (default: 10)
    #    fast_pac_format=binary option can be used to select binary format for
    #        storing PAC entries in order to save some space (the default
    #        text format uses about 2.5 times the size of minimal binary
    #        format)
    #
    # wpa_supplicant supports number of "EAP workarounds" to work around
    # interoperability issues with incorrectly behaving authentication servers.
    # These are enabled by default because some of the issues are present in large
    # number of authentication servers. Strict EAP conformance mode can be
    # configured by disabling workarounds with eap_workaround=0.

    # Example blocks:

    # Simple case: WPA-PSK, PSK as an ASCII passphrase, allow all valid ciphers
    network={
        ssid="simple"
        psk="very secret passphrase"
        priority=5
    }

    # Same as previous, but request SSID-specific scanning (for APs that reject
    # broadcast SSID)
    network={
        ssid="second ssid"
        scan_ssid=1
        psk="very secret passphrase"
        priority=2
    }

    # Only WPA-PSK is used. Any valid cipher combination is accepted.
    network={
        ssid="example"
        proto=WPA
        key_mgmt=WPA-PSK
        pairwise=CCMP TKIP
        group=CCMP TKIP WEP104 WEP40
        psk=06b4be19da289f475aa46a33cb793029d4ab3db7a23ee92382eb0106c72ac7bb
        priority=2
    }

    # WPA-Personal(PSK) with TKIP and enforcement for frequent PTK rekeying
    network={
        ssid="example"
        proto=WPA
        key_mgmt=WPA-PSK
        pairwise=TKIP
        group=TKIP
        psk="not so secure passphrase"
        wpa_ptk_rekey=600
    }

    # Only WPA-EAP is used. Both CCMP and TKIP is accepted. An AP that used WEP104
    # or WEP40 as the group cipher will not be accepted.
    network={
        ssid="example"
        proto=RSN
        key_mgmt=WPA-EAP
        pairwise=CCMP TKIP
        group=CCMP TKIP
        eap=TLS
        identity="user@example.com"
        ca_cert="/etc/cert/ca.pem"
        client_cert="/etc/cert/user.pem"
        private_key="/etc/cert/user.prv"
        private_key_passwd="password"
        priority=1
    }

    # EAP-PEAP/MSCHAPv2 configuration for RADIUS servers that use the new peaplabel
    # (e.g., Radiator)
    network={
        ssid="example"
        key_mgmt=WPA-EAP
        eap=PEAP
        identity="user@example.com"
        password="foobar"
        ca_cert="/etc/cert/ca.pem"
        phase1="peaplabel=1"
        phase2="auth=MSCHAPV2"
        priority=10
    }

    # EAP-TTLS/EAP-MD5-Challenge configuration with anonymous identity for the
    # unencrypted use. Real identity is sent only within an encrypted TLS tunnel.
    network={
        ssid="example"
        key_mgmt=WPA-EAP
        eap=TTLS
        identity="user@example.com"
        anonymous_identity="anonymous@example.com"
        password="foobar"
        ca_cert="/etc/cert/ca.pem"
        priority=2
    }

    # EAP-TTLS/MSCHAPv2 configuration with anonymous identity for the unencrypted
    # use. Real identity is sent only within an encrypted TLS tunnel.
    network={
        ssid="example"
        key_mgmt=WPA-EAP
        eap=TTLS
        identity="user@example.com"
        anonymous_identity="anonymous@example.com"
        password="foobar"
        ca_cert="/etc/cert/ca.pem"
        phase2="auth=MSCHAPV2"
    }

    # WPA-EAP, EAP-TTLS with different CA certificate used for outer and inner
    # authentication.
    network={
        ssid="example"
        key_mgmt=WPA-EAP
        eap=TTLS
        # Phase1 / outer authentication
        anonymous_identity="anonymous@example.com"
        ca_cert="/etc/cert/ca.pem"
        # Phase 2 / inner authentication
        phase2="autheap=TLS"
        ca_cert2="/etc/cert/ca2.pem"
        client_cert2="/etc/cer/user.pem"
        private_key2="/etc/cer/user.prv"
        private_key2_passwd="password"
        priority=2
    }

    # Both WPA-PSK and WPA-EAP is accepted. Only CCMP is accepted as pairwise and
    # group cipher.
    network={
        ssid="example"
        bssid=00:11:22:33:44:55
        proto=WPA RSN
        key_mgmt=WPA-PSK WPA-EAP
        pairwise=CCMP
        group=CCMP
        psk=06b4be19da289f475aa46a33cb793029d4ab3db7a23ee92382eb0106c72ac7bb
    }

    # Special characters in SSID, so use hex string. Default to WPA-PSK, WPA-EAP
    # and all valid ciphers.
    network={
        ssid=00010203
        psk=000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
    }


    # EAP-SIM with a GSM SIM or USIM
    network={
        ssid="eap-sim-test"
        key_mgmt=WPA-EAP
        eap=SIM
        pin="1234"
        pcsc=""
    }


    # EAP-PSK
    network={
        ssid="eap-psk-test"
        key_mgmt=WPA-EAP
        eap=PSK
        anonymous_identity="eap_psk_user"
        password=06b4be19da289f475aa46a33cb793029
        identity="eap_psk_user@example.com"
    }


    # IEEE 802.1X/EAPOL with dynamically generated WEP keys (i.e., no WPA) using
    # EAP-TLS for authentication and key generation; require both unicast and
    # broadcast WEP keys.
    network={
        ssid="1x-test"
        key_mgmt=IEEE8021X
        eap=TLS
        identity="user@example.com"
        ca_cert="/etc/cert/ca.pem"
        client_cert="/etc/cert/user.pem"
        private_key="/etc/cert/user.prv"
        private_key_passwd="password"
        eapol_flags=3
    }


    # LEAP with dynamic WEP keys
    network={
        ssid="leap-example"
        key_mgmt=IEEE8021X
        eap=LEAP
        identity="user"
        password="foobar"
    }

    # EAP-IKEv2 using shared secrets for both server and peer authentication
    network={
        ssid="ikev2-example"
        key_mgmt=WPA-EAP
        eap=IKEV2
        identity="user"
        password="foobar"
    }

    # EAP-FAST with WPA (WPA or WPA2)
    network={
        ssid="eap-fast-test"
        key_mgmt=WPA-EAP
        eap=FAST
        anonymous_identity="FAST-000102030405"
        identity="username"
        password="password"
        phase1="fast_provisioning=1"
        pac_file="/etc/wpa_supplicant.eap-fast-pac"
    }

    network={
        ssid="eap-fast-test"
        key_mgmt=WPA-EAP
        eap=FAST
        anonymous_identity="FAST-000102030405"
        identity="username"
        password="password"
        phase1="fast_provisioning=1"
        pac_file="blob://eap-fast-pac"
    }

    # Plaintext connection (no WPA, no IEEE 802.1X)
    network={
        ssid="plaintext-test"
        key_mgmt=NONE
    }


    # Shared WEP key connection (no WPA, no IEEE 802.1X)
    network={
        ssid="static-wep-test"
        key_mgmt=NONE
        wep_key0="abcde"
        wep_key1=0102030405
        wep_key2="1234567890123"
        wep_tx_keyidx=0
        priority=5
    }


    # Shared WEP key connection (no WPA, no IEEE 802.1X) using Shared Key
    # IEEE 802.11 authentication
    network={
        ssid="static-wep-test2"
        key_mgmt=NONE
        wep_key0="abcde"
        wep_key1=0102030405
        wep_key2="1234567890123"
        wep_tx_keyidx=0
        priority=5
        auth_alg=SHARED
    }


    # IBSS/ad-hoc network with WPA-None/TKIP.
    network={
        ssid="test adhoc"
        mode=1
        frequency=2412
        proto=WPA
        key_mgmt=WPA-NONE
        pairwise=NONE
        group=TKIP
        psk="secret passphrase"
    }


    # Catch all example that allows more or less all configuration modes
    network={
        ssid="example"
        scan_ssid=1
        key_mgmt=WPA-EAP WPA-PSK IEEE8021X NONE
        pairwise=CCMP TKIP
        group=CCMP TKIP WEP104 WEP40
        psk="very secret passphrase"
        eap=TTLS PEAP TLS
        identity="user@example.com"
        password="foobar"
        ca_cert="/etc/cert/ca.pem"
        client_cert="/etc/cert/user.pem"
        private_key="/etc/cert/user.prv"
        private_key_passwd="password"
        phase1="peaplabel=0"
    }

    # Example of EAP-TLS with smartcard (openssl engine)
    network={
        ssid="example"
        key_mgmt=WPA-EAP
        eap=TLS
        proto=RSN
        pairwise=CCMP TKIP
        group=CCMP TKIP
        identity="user@example.com"
        ca_cert="/etc/cert/ca.pem"
        client_cert="/etc/cert/user.pem"

        engine=1

        # The engine configured here must be available. Look at
        # OpenSSL engine support in the global section.
        # The key available through the engine must be the private key
        # matching the client certificate configured above.

        # use the opensc engine
        #engine_id="opensc"
        #key_id="45"

        # use the pkcs11 engine
        engine_id="pkcs11"
        key_id="id_45"

        # Optional PIN configuration; this can be left out and PIN will be
        # asked through the control interface
        pin="1234"
    }

    # Example configuration showing how to use an inlined blob as a CA certificate
    # data instead of using external file
    network={
        ssid="example"
        key_mgmt=WPA-EAP
        eap=TTLS
        identity="user@example.com"
        anonymous_identity="anonymous@example.com"
        password="foobar"
        ca_cert="blob://exampleblob"
        priority=20
    }

    blob-base64-exampleblob={
    SGVsbG8gV29ybGQhCg==
    }


    # Wildcard match for SSID (plaintext APs only). This example select any
    # open AP regardless of its SSID.
    network={
        key_mgmt=NONE
    }


  • 相关阅读:
    机器学习到底适合哪些人群?
    Window 下载Android系统源代码
    KeyguardSimPinView
    TrustManagerService.java
    ScrimState.java
    KeyguardSliceView.java
    博客
    name="verify-v1"是做什么用的
    基础练习 特殊回文数
    算法训练 P1103
  • 原文地址:https://www.cnblogs.com/oracleloyal/p/5564786.html
Copyright © 2020-2023  润新知