• (六)6.5 Neurons Networks Implements of Sparse Autoencoder


    一大波matlab代码正在靠近.- -!

    sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征。该网络共有3层,输入层是64个节点,隐含层是25个节点,输出层当然也是64个节点了。

    main函数,  分五步走,每个函数的实现细节在下边都列出了。

    %%======================================================================
    %% STEP 0: Here we provide the relevant parameters values that will
    %  allow your sparse autoencoder to get good filters; you do not need to 
    %  change the parameters below.
    
    visibleSize = 8*8;   % number of input units 
    hiddenSize = 25;     % number of hidden units 
    sparsityParam = 0.01;   % desired average activation of the hidden units.
                         % (This was denoted by the Greek alphabet rho, 
    				   	 % which looks like a lower-case "p",
    		     %  in the lecture notes). 
    lambda = 0.0001;     % weight decay parameter       
    beta = 3;            % weight of sparsity penalty term       
    
    %%======================================================================
    %% STEP 1: Implement sampleIMAGES
    %
    %  After implementing sampleIMAGES, the display_network command should
    %  display a random sample of 200 patches from the dataset
    patches = sampleIMAGES;
    display_network(patches(:,randi(size(patches,2),200,1)),8);
    
    
    %  Obtain random parameters theta
    theta = initializeParameters(hiddenSize, visibleSize);
    
    %%======================================================================
    %% STEP 2: Implement sparseAutoencoderCost
    %
    %  You can implement all of the components (squared error cost, weight decay term,
    %  sparsity penalty) in the cost function at once, but it may be easier to do 
    %  it step-by-step and run gradient checking (see STEP 3) after each step.  We 
    %  suggest implementing the sparseAutoencoderCost function using the following steps:
    %
    %  (a) Implement forward propagation in your neural network, and implement the 
    %      squared error term of the cost function.  Implement backpropagation to 
    %      compute the derivatives.   Then (using lambda=beta=0), run Gradient Checking 
    %      to verify that the calculations corresponding to the squared error cost 
    %      term are correct.
    %
    %  (b) Add in the weight decay term (in both the cost function and the derivative
    %      calculations), then re-run Gradient Checking to verify correctness. 
    %
    %  (c) Add in the sparsity penalty term, then re-run Gradient Checking to 
    %      verify correctness.
    %
    %  Feel free to change the training settings when debugging your
    %  code.  (For example, reducing the training set size or 
    %  number of hidden units may make your code run faster; and setting beta 
    %  and/or lambda to zero may be helpful for debugging.)  However, in your 
    %  final submission of the visualized weights, please use parameters we 
    %  gave in Step 0 above.
    
    [cost, grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
    									lambda,sparsityParam, beta, patches);
    
    %%======================================================================
    %% STEP 3: Gradient Checking
    %
    % Hint: If you are debugging your code, performing gradient checking on smaller models 
    % and smaller training sets (e.g., using only 10 training examples and 1-2 hidden 
    % units) may speed things up.
    
    % First, lets make sure your numerical gradient computation is correct for a
    % simple function.  After you have implemented computeNumericalGradient.m,
    % run the following: 
    checkNumericalGradient();
    
    % Now we can use it to check your cost function and derivative calculations
    % for the sparse autoencoder.  
    numgrad = computeNumericalGradient( @(x) sparseAutoencoderCost(x, visibleSize, ...
    						hiddenSize, lambda,sparsityParam, beta, patches), theta);
    
    % Use this to visually compare the gradients side by side
    disp([numgrad grad]); 
    
    % Compare numerically computed gradients with the ones obtained from backpropagation
    diff = norm(numgrad-grad)/norm(numgrad+grad);
    disp(diff); % Should be small. In our implementation, these values are
                % usually less than 1e-9.
                % When you got this working, Congratulations!!! 
    
    %%======================================================================
    %% STEP 4: After verifying that your implementation of
    %  sparseAutoencoderCost is correct, You can start training your sparse
    %  autoencoder with minFunc (L-BFGS).
    
    %  Randomly initialize the parameters
    theta = initializeParameters(hiddenSize, visibleSize);
    
    %  Use minFunc to minimize the function
    addpath minFunc/
    options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
                              % function. Generally, for minFunc to work, you
                              % need a function pointer with two outputs: the
                              % function value and the gradient. In our problem,
                              % sparseAutoencoderCost.m satisfies this.
    options.maxIter = 400;	  % Maximum number of iterations of L-BFGS to run 
    options.display = 'on';
    [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p,visibleSize, hiddenSize, ...
    							lambda, sparsityParam, beta, patches),theta, options);
    %%======================================================================
    %% STEP 5: Visualization 
    
    W1 = reshape(opttheta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
    display_network(W1', 12); 
    
    print -djpeg weights.jpg   % save the visualization to a file 
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应step1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %三个函数(sampleIMAGES)(normalizeData)(initializeParameters)%%%%
    function patches = sampleIMAGES()
    load IMAGES;    % 加载初始的10张512*512大图片 
    
    patchsize = 8;  % 采样大小
    numpatches = 10000;
    
    %  初始化该矩阵为0,该矩阵为 64*10000维每一列为一张图片. 
    patches = zeros(patchsize*patchsize, numpatches);
      
    %  IMAGES 为一个包含10 张images的三维数组,IMAGES(:,:,6) 是一个第六张图片的 512x512 的二维数组,
    %  命令 "imagesc(IMAGES(:,:,6)), colormap gray;" 可以把第六张图可视化.
    % 这几张图是经过whiteing预处理的?
    %  IMAGES(21:30,21:30,1) 就是从第一张图采样得到的(21,21) to (30,30) 的小patchs
    
    %在每张图片中随机选取1000个patch,共10000个patch
    for imageNum = 1:10
        [rowNum colNum] = size(IMAGES(:,:,imageNum));
    	%实现每张图片选取1000个patch
        for patchNum = 1:1000
    		%得到左上角的两个点
            xPos = randi([1,rowNum-patchsize+1]);
            yPos = randi([1, colNum-patchsize+1]);
    		%填充到矩阵里
            patches(:,(imageNum-1)*1000+patchNum) = ...
    			reshape(IMAGES(xPos:xPos+7,yPos:yPos+7,imageNum),64,1);
        end
    end
    %由于autoencoder的激励函数是sigmod函数,输出值限定在[0,1],故为了达到H W,b(x)= x,x作为输入,
    %也要限定在0-1之间,故需要进行正则化
    patches = normalizeData(patches);
    end
    
    % 正则化的函数,不太明白s-sigma法则?
    function patches = normalizeData(patches)
    % 减去均值 
    patches = bsxfun(@minus, patches, mean(patches));
    % s = std(X),此处X是一个矢量,该函数返回标准偏差(注意其分母为n-1,而不是n) 。
    % 结果s是一个X各样本偏差无偏估计的平方根(X包含独立的、同分布样本)。
    % 如果X是一个矩阵,该函数返回一个行矢量,它包含了X每列元素的标准偏差。
    pstd = 3 * std(patches(:));
    patches = max(min(patches, pstd), -pstd) / pstd;
    % 重新压缩 从[-1,1] 到 [0.1,0.9]
    patches = (patches + 1) * 0.4 + 0.1;
    end
    
    %首先初始化参数
    function theta = initializeParameters(hiddenSize, visibleSize)
    % Initialize parameters randomly based on layer sizes.
     % we'll choose weights uniformly from the interval [-r, r]
    r  = sqrt(6) / sqrt(hiddenSize+visibleSize+1); 
    %rand(a,b)产生均匀分布的随机矩阵维度为a*b,元素取值范围0.0 ~1.0。
    W1 = rand(hiddenSize, visibleSize) * 2 * r - r; 
    %rand(a,b)*2*r即取值范围为(0-2r), rand(a,b)*2*r -r即取值范围为(-r - r)
    W2 = rand(visibleSize, hiddenSize) * 2 * r - r;
    b1 = zeros(hiddenSize, 1); %连接到hidden unit的偏置单元
    b2 = zeros(visibleSize, 1); %链接到output layer的偏置单元
    %  将矩阵合并为一个向量
    theta = [W1(:) ; W2(:) ; b1(:) ; b2(:)];
    %初始化参数结束
    end
    
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应step 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %%%%%返回稀疏损失函数的值与梯度值%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
    										lambda, sparsityParam, beta, data)
    % visibleSize: 输入层单元数
    % hiddenSize: 隐藏单元数 
    % lambda: 正则项
    % sparsityParam: (p)指定的平均激活度p
    % beta: 稀疏权重项B
    % data: 64x10000 的矩阵为training data,data(:,i)  是第i个训练样例.   
    % 把参数拼接为一个向量,因为采用L-BFGS优化,L-BFGS要求的就是向量. 
    % 将长向量转换成每一层的权值矩阵和偏置向量值
    % theta向量的的 1->hiddenSize*visibleSize,W1共hiddenSize*visibleSize 个元素,重新作为矩阵
    W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
    
    %类似以上一直往后放
    W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
    b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
    b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);
    
    % 参数对应的梯度矩阵 ;
    cost = 0;
    W1grad = zeros(size(W1)); 
    W2grad = zeros(size(W2));
    b1grad = zeros(size(b1)); 
    b2grad = zeros(size(b2));
    
    Jcost = 0;  %直接误差
    Jweight = 0;%权值惩罚
    Jsparse = 0;%稀疏性惩罚
    [n m] = size(data); %m为样本的个数,n为样本的特征数
    
    %前向算法计算各神经网络节点的线性组合值和active值
    %W1为 hiddenSize*visibleSize的矩阵
    %data为 visibleSize* trainexampleNum的矩阵
    %remat(b1,1,m)把向量b1复制扩展为hiddenSize*m列
    % 根据公式 Z^(l) = z^(l-1)*W^(l-1)+b^(l-1)
    %z2保存的是10000个样本下隐藏层的输入,为hiddenSize*m维的矩阵,每一列代表一次输入
    z2= W1*data + remat(b1,1,m);%第二层的输入
    a2 = sigmoid(z2); %对z2取sigmod 即得到a2,即隐藏层的输出
    z3 = W2*a2+repmat(b2,1,m); %output layer 的输入
    a3 = sigmoid(z3); %output 层的输出
    
    % 计算预测产生的误差
    %对应J(W,b), 外边的sum是对所有样本求和,里边的sum是对输出层的所有分量求和
    Jcost = (0.5/m)*sum(sum((a3-data).^2));
    %计算权值惩罚项 正则化项,并没有带正则项参数
    Jweight = (1/2)*(sum(sum(W1.^2))+sum(sum(W2.^2)));
    %计算稀疏性规则项 sum(matrix,2)是进行按行求和运算,即所有样本在隐层的输出累加求均值
    % rho为一个hiddenSize*1 维的向量
    
    rho = (1/m).*sum(a2,2);%求出隐含层输出aj的平均值向量 rho为hiddenSize维的
    %求稀疏项的损失
    Jsparse = sum(sparsityParam.*log(sparsityParam./rho)+(1-sparsityParam).*log((1-sparsityParam)./(1-rho)));
    %损失函数的总表达式 损失项 + 正则化项 + 稀疏项
    cost = Jcost + lambda*Jweight + beta*Jsparse;
    %计算l = 3 即 output-layer层的误差dleta3,因为在autoencoder中输入等于输出h(W,b)=x
    delta3 = -(data-a3).*sigmoidInv(z3);
    %因为加入了稀疏规则项,所以计算偏导时需要引入该项,sterm为稀疏项,为hiddenSize维的向量
    sterm = beta*(-sparsityParam./rho+(1-sparsityParam)./(1-rho))
    % W2 为64*25的矩阵,d3为第三层的输出为64*10000的矩阵,每一列为每个样本x^(i)的输出,W2'为W2的转置
    % repmat(sterm,1,m)会把函数复制扩展为m列的矩阵,每一列都为sterm向量。
    % d2为hiddenSize*10000的矩阵
    delta2 = (W2'*delta3+repmat(sterm,1,m)).*sigmoidInv(z2); 
    
    %计算W1grad 
    % data'为10000*64的矩阵 d2*data' 位25*64的矩阵
    W1grad = W1grad+delta2*data';
    W1grad = (1/m)*W1grad+lambda*W1;
    
    %计算W2grad  
    W2grad = W2grad+delta3*a2';
    W2grad = (1/m).*W2grad+lambda*W2;
    
    %计算b1grad 
    b1grad = b1grad+sum(delta2,2);
    b1grad = (1/m)*b1grad;%注意b的偏导是一个向量,所以这里应该把每一行的值累加起来
    
    %计算b2grad 
    b2grad = b2grad+sum(delta3,2);
    b2grad = (1/m)*b2grad;
    %计算完成重新转为向量
    grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];
    end
    
    %-------------------------------------------------------------------
    % Here's an implementation of the sigmoid function, which you may find useful
    % in your computation of the costs and the gradients.  This inputs a (row or
    % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 
    
    function sigm = sigmoid(x)
        sigm = 1 ./ (1 + exp(-x));
    end
    
    %sigmoid函数的导函数
    function sigmInv = sigmoidInv(x)
        sigmInv = sigmoid(x).*(1-sigmoid(x));
    end
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应step 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %三个函数:(checkNumericalGradient)(simpleQuadraticFunction)(computeNumericalGradient)
    function [] = checkNumericalGradient()
    x = [4; 10];
    %当前简单函数实际的值与实际的导函数
    [value, grad] = simpleQuadraticFunction(x);
    % 在点 x 处计算简单函数的梯度,("@simpleQuadraticFunction" denotes a pointer to a function.)
    numgrad = computeNumericalGradient(@simpleQuadraticFunction, x);
    % disp()等价于 print()
    disp([numgrad grad]);
    fprintf('The above two columns you get should be very similar.
    (Left-Your Numerical Gradient, Right-Analytical Gradient)
    
    ');
    % norm 等价于 sqrt(sum(X.^2)); 如果实现正确,设置 EPSILON = 0.0001,误差应该为2.1452e-12 
    diff = norm(numgrad-grad)/norm(numgrad+grad);
    disp(diff); 
    fprintf('Norm of the difference between numerical and analytical gradient (should be < 1e-9)
    
    ');
    end
    
     %这个简单函数用来检验写的computeNumericalGradient函数的正确性
    function [value,grad] = simpleQuadraticFunction(x)
    % this function accepts a 2D vector as input. 
    % Its outputs are:
    %   value: h(x1, x2) = x1^2 + 3*x1*x2
    %   grad: A 2x1 vector that gives the partial derivatives of h with respect to x1 and x2 
    % Note that when we pass @simpleQuadraticFunction(x) to computeNumericalGradients, we're assuming
    % that computeNumericalGradients will use only the first returned value of this function.
    value = x(1)^2 + 3*x(1)*x(2);
    grad = zeros(2, 1);
    grad(1)  = 2*x(1) + 3*x(2);
    grad(2)  = 3*x(1);
    end
    
    %梯度检验的函数
    function numgrad = computeNumericalGradient(J, theta)
    % theta: 参数,向量或者实数均可
    % J: 输出值为实数的函数. 调用y = J(theta)将会返回函数在theta处的值
    
    % numgrad初始化为0,与theta维度相同
    numgrad = zeros(size(theta));
    EPSILON = 1e-4;
    % theta是一个行向量,size(theta,1)是求行数
    n = size(theta,1);
    %产生一个维度为n的单位矩阵
    E = eye(n);
    for i = 1:n
    	% (n,:)代表第n行,所有的列
    	% (:,n)代表所有行,第n列
    	% 由于E是单位矩阵,所以只有第i行第i列的元素变为EPSILON
        delta = E(:,i)*EPSILON;
    	%向量第i维度的值
        numgrad(i) = (J(theta+delta)-J(theta-delta))/(EPSILON*2.0);
    end
    %% ---------------------------------------------------------------
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 对应step 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%关于函数的展示%%%%%%%%%%%%%%%%%%%%%%%%%%%
    function [h, array] = display_network(A, opt_normalize, opt_graycolor, cols, opt_colmajor)
    % This function visualizes filters in matrix A. Each column of A is a
    % filter. We will reshape each column into a square image and visualizes
    % on each cell of the visualization panel. 
    % All other parameters are optional, usually you do not need to worry
    % about it.
    % opt_normalize: whether we need to normalize the filter so that all of
    % them can have similar contrast. Default value is true.
    % opt_graycolor: whether we use gray as the heat map. Default is true.
    % cols: how many columns are there in the display. Default value is the
    % squareroot of the number of columns in A.
    % opt_colmajor: you can switch convention to row major for A. In that
    % case, each row of A is a filter. Default value is false.
    warning off all
    
    if ~exist('opt_normalize', 'var') || isempty(opt_normalize)
        opt_normalize= true;
    end
    
    if ~exist('opt_graycolor', 'var') || isempty(opt_graycolor)
        opt_graycolor= true;
    end
    
    if ~exist('opt_colmajor', 'var') || isempty(opt_colmajor)
        opt_colmajor = false;
    end
    
    % rescale
    A = A - mean(A(:));
    
    if opt_graycolor, colormap(gray); end
    
    % compute rows, cols
    [L M]=size(A);
    sz=sqrt(L);
    buf=1;
    if ~exist('cols', 'var')
        if floor(sqrt(M))^2 ~= M
            n=ceil(sqrt(M));
            while mod(M, n)~=0 && n<1.2*sqrt(M), n=n+1; end
            m=ceil(M/n);
        else
            n=sqrt(M);
            m=n;
        end
    else
        n = cols;
        m = ceil(M/n);
    end
    
    array=-ones(buf+m*(sz+buf),buf+n*(sz+buf));
    
    if ~opt_graycolor
        array = 0.1.* array;
    end
    
    
    if ~opt_colmajor
        k=1;
        for i=1:m
            for j=1:n
                if k>M, 
                    continue; 
                end
                clim=max(abs(A(:,k)));
                if opt_normalize
                    array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;
                else
                    array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/max(abs(A(:)));
                end
                k=k+1;
            end
        end
    else
        k=1;
        for j=1:n
            for i=1:m
                if k>M, 
                    continue; 
                end
                clim=max(abs(A(:,k)));
                if opt_normalize
                    array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;
                else
                    array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz);
                end
                k=k+1;
            end
        end
    end
    
    if opt_graycolor
        h=imagesc(array,'EraseMode','none',[-1 1]);
    else
        h=imagesc(array,'EraseMode','none',[-1 1]);
    end
    axis image off
    
    drawnow;
    
    warning on all
    

      

  • 相关阅读:
    【西瓜书】周志华《机器学习》学习笔记与习题探讨(一)
    01-线性回归算法
    NumPy 字符串函数
    Numpy函数分类
    Excel一对多查询(index+small+if)
    支付机构MRC模
    数据分析方法论
    窗口函数/解析函数
    数据分析
    底层逻辑
  • 原文地址:https://www.cnblogs.com/ooon/p/5299593.html
Copyright © 2020-2023  润新知