• POJ 3481 Double Queue


    平衡树。。

    熟悉些fhq-Treap,为啥我在poj读入优化不能用啊

    #include <iostream>
    #include <cstdio>
    #include <ctime>
    #include <cstdlib>
    #include <cstring>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    
    const int N = 1000005;
    int tree[N][2], key[N], val[N], rnd[N], size[N], tot, root;
    int tx, ty, tz, cnt;
    
    int rndom(){
        return rand() << 15 | rand();
    }
    
    int newNode(int k, int p){
         key[++tot] = k, val[tot] = p, rnd[tot] = rndom(), size[tot] = 1;
         return tot;
    }
    
    void push_up(int x){
        size[x] = size[tree[x][0]] + size[tree[x][1]] + 1;
    }
    
    int merge(int x, int y){
        if(!x || !y) return x + y;
        if(rnd[x] < rnd[y]){
            tree[x][1] = merge(tree[x][1], y);
            push_up(x);
            return x;
        }
        else{
            tree[y][0] = merge(x, tree[y][0]);
            push_up(y);
            return y;
        }
    }
    
    void split(int cur, int k, int &x, int &y){
        if(!cur) { x = 0, y = 0; return; }
        if(val[cur] <= k) x = cur, split(tree[cur][1], k, tree[cur][1], y);
        else y = cur, split(tree[cur][0], k, x, tree[cur][0]);
        push_up(cur);
    }
    
    void insert(int k, int p){
        split(root, p, tx, ty);
        root = merge(merge(tx, newNode(k, p)), ty);
    }
    
    void del(int p){
        split(root, p, tx, tz);
        split(tx, p - 1, tx, ty);
        ty = merge(tree[ty][0], tree[ty][1]);
        root = merge(merge(tx, ty), tz);
    }
    
    int minimum(){
        int cur = root;
        while(tree[cur][0] != 0) cur = tree[cur][0];
        return cur;
    }
    
    int maximum(){
        int cur = root;
        while(tree[cur][1] != 0) cur = tree[cur][1];
        return cur;
    }
    
    int select(int cur, int k){
        while(1){
            if(size[tree[cur][0]] >= k) cur = tree[cur][0];
            else{
                if(size[tree[cur][0]] + 1 == k) return cur;
                k = k - size[tree[cur][0]] - 1, cur = tree[cur][1];
            }
        }
    }
    
    void init(){
        full(tree, 0), full(val, 0), full(size, 0);
        full(key, 0), full(rnd, 0);
        cnt = tot = root = 0;
    }
    
    int main(){
    
        srand(time(0));
        int opt; init();
        while(scanf("%d", &opt) != EOF && opt){
            if(opt == 1) {
                int k, p; scanf("%d%d", &k, &p);
                insert(k, p), cnt ++;
            }
            else if(opt == 2){
                if(cnt == 0){
                    puts("0");
                    continue;
                }
                int res = maximum();
                //int res = select(root, size[root]);
                printf("%d
    ", key[res]); del(val[res]), cnt --;
            }
            else if(opt == 3){
                if(cnt == 0){
                    puts("0");
                    continue;
                }
                int res = minimum();
                //int res = select(root, 1);
                printf("%d
    ", key[res]); del(val[res]), cnt --;
            }
        }
        return 0;
    }
    
  • 相关阅读:
    630. Course Schedule III
    20151:补足程序1
    5w5:第五周程序填空题1
    621. Task Scheduler
    452. Minimum Number of Arrows to Burst Balloons
    435. Non-overlapping Intervals
    402. Remove K Digits
    406. Queue Reconstruction by Height
    376. Wiggle Subsequence
    122. Best Time to Buy and Sell Stock II
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/10616913.html
Copyright © 2020-2023  润新知