• Educational Codeforces Round 104 (Rated for Div. 2)


    A - Arena

    题意

    有一堆人打架,两个人打架战斗力强的赢,相等就谁也不赢。
    问每次随机挑一对人打架,有多少人可能一直赢。

    题解

    随机就是说每个人只会跟最弱的打,如果当前人比最弱的强ans就+1。

    #include <bits/stdc++.h>
    #define int long long
    #define Mid ((l + r) >> 1)
    #define lson (rt << 1)
    #define rson (rt << 1 | 1)
    using namespace std;
    int read(){
        char c; int num, f = 1;
        while(c = getchar(),!isdigit(c)) if(c == '-') f = -1; num = c - '0';
        while(c = getchar(), isdigit(c)) num = num * 10 + c - '0';
        return f * num;
    }
    int n, a[100009], cnt;
    void work() {
        n = read(); cnt = 0;
        for(int i = 1; i <= n; i++) a[i] = read();
        sort(a + 1, a + 1 + n);
        for(int i = 1; i <= n; i++) {
            cnt += a[i] != a[1];
        }
        printf("%lld
    ", cnt);
    }
    signed main()
    {
        int Case = read();
        while(Case--) work();
        return 0;
    }
    View Code

    B - Cat Cycle

    题意

    有两只猫要睡觉,A猫第一天睡(n)号点,第二天睡(n-1)号点,第(n+1)天回到(n)号点睡觉,以此类推。
    B猫从(1)号点开始往后睡,但是B猫干不过A猫,如果B猫和A猫下一天会到同一个地方睡觉,则B猫会跳过那个位置,到下一天的位置睡。
    现在问第(k)天B猫睡在哪里。

    题解

    首先如果(n)是偶数,他们就不会睡在同一个地方,直接(k)(n)取模即可。
    如果是奇数,说明有冲突,观察冲突是如何发生的。
    AB猫一开始面对面,然后走(lfloorfrac{n}{2} floor)格之后就会撞到,然后B猫多走一步。
    然后AB猫变成背对背相邻了,把(n)格铺开,其实问题又跟之前一样了,所以一共撞到(frac{k}{frac{n}{2}})次,就是多走这么多步,加上之后还是取模即可。

    #include <bits/stdc++.h>
    #define int long long
    #define Mid ((l + r) >> 1)
    #define lson (rt << 1)
    #define rson (rt << 1 | 1)
    using namespace std;
    int read(){
        char c; int num, f = 1;
        while(c = getchar(),!isdigit(c)) if(c == '-') f = -1; num = c - '0';
        while(c = getchar(), isdigit(c)) num = num * 10 + c - '0';
        return f * num;
    }
    int n, k;
    void work() {
        n = read(); k = read();
        if(n& 1) {
            k -= 1;
            k += k / (n / 2);
            k = k % n + 1;
            printf("%lld
    ", k);
        } else {
            printf("%lld
    ", (k - 1) % n + 1);
        }
    }
    signed main()
    {
        int Case = read();
        while(Case--) work();
        return 0;
    }
    View Code

    C - Minimum Ties

    题意

    一堆人打架,打赢了加3分,输了不加分,平局各加一分。
    构造一种比赛状况使得最后总分一样的前提下平局最少。

    题解

    可以列一张表格(g[i][j] = -g[i][j]), 平局为0。

    首先如果是奇数个队伍的话就直接没有平局就行了,每个人赢(frac{n - 1}{2})场。
    第一个人是(x,1,1,1,-1,-1,-1)的,第二个人是(-1,x,1,1,1,-1,-1)(x)表示没有这场比赛。
    发现这东西是循环的。

    然后考虑偶数,偶数的话不可能没有平局,就加入一场平局。
    发现由于平局加的不是完整的3分,所以一旦一个人有了平局,就所有人都得有平局。
    把第一个人改成(1,1,0,-1,-1)就行了。
    (考场上降智,脑筋急转弯题杀我。)

    #include <bits/stdc++.h>
    #define Mid ((l + r) >> 1)
    #define lson (rt << 1)
    #define rson (rt << 1 | 1)
    using namespace std;
    int read(){
        char c; int num, f = 1;
        while(c = getchar(),!isdigit(c)) if(c == '-') f = -1; num = c - '0';
        while(c = getchar(), isdigit(c)) num = num * 10 + c - '0';
        return f * num;
    }
    void work() {
        int n = read();
        if(n & 1) {
            for(int i = 1; i <= n; i++)
                for(int j = i + 1, cnt = 1; j <= n; j++, cnt++)
                    printf("%d ", (cnt & 1) ? 1 : -1);
        } else {
            for(int i = 1; i <= n; i++) {
                for(int j = i + 1; j <= n; j++) {
                    if(j - i ==  (n - 2) / 2 + 1) printf("0 ");
                    else if(j - i <= (n - 2) / 2) printf("1 ");
                    else printf("-1 ");
                }
            }
        }
        printf("
    ");
    }
    signed main()
    {
        int Case = read();
        while(Case--) work();
        return 0;
    }
    View Code

    D - Pythagorean Triples

    题意

    找到(1le ale b le c le n),使得(a^2 = b + c),并且有(c^2 = a^2 + b^2)的对数。

    题解

    还是考场降智我把直角三角形的条件看成是能组成三角形==。

    看对题目这就是道傻逼题。

    化简公式去掉(a^2),解出(c = b + 1), (a^2 = 2b + 1)
    显然a必须是奇数。

    据说有(O(1))写法,但我写法是二分。
    因为一旦一个(a)可行,那么从(3)到这个(a)的所有奇数都可行,暴力二分就行了。

    #include <bits/stdc++.h>
    #define int long long
    #define Mid ((l + r) >> 1)
    #define lson (rt << 1)
    #define rson (rt << 1 | 1)
    using namespace std;
    int read(){
        char c; int num, f = 1;
        while(c = getchar(),!isdigit(c)) if(c == '-') f = -1; num = c - '0';
        while(c = getchar(), isdigit(c)) num = num * 10 + c - '0';
        return f * num;
    }
    int n;
    void work() {
        n = read();
        int l = 1, r = 1e5;
        while(l <= r) {
            int x = Mid * 2 + 1;
            if((x * x + 1) / 2 > n || x > n) r = Mid - 1;
            else l = Mid + 1;
        }
        printf("%lld
    ", r);
    }
    signed main()
    {
        int Case = read();
        while(Case--) work();
        return 0;
    }
    View Code

    E - Cheap Dinner

    题意

    给定一张四层的分层图,每一层只会跟上一层有连边。
    要求在每一层里面找出一个点,使得点是独立的并且点权和最小。
    (独立指两两之间不能有连边)

    题解

    (最小点权独立集难道不是费用流吗)
    由于只取一对,没必要用费用流。
    考虑暴力dp。
    每一个点的能不能取只跟上一层取了哪个点有关。
    (f[i][j])表示前i层,第i层的j点必须要取的最小代价。

    (f[i][j])(f[i - 1][k](k!=fa[j]))转移而来。
    但是对于一个点又很多个k,但是由于注意到边在均摊给每个点之后,每个点均摊到的边其实很少,所以对于每个点的转移,一整段的东西是很多的,可以考虑数据结构维护。
    用线段树或者ST表都可,只要维护区间最小值就行了。

    #include <bits/stdc++.h>
    #define int long long
    #define Mid ((l + r) >> 1)
    #define lson (rt << 1)
    #define rson (rt << 1 | 1)
    using namespace std;
    int read(){
        char c; int num, f = 1;
        while(c = getchar(),!isdigit(c)) if(c == '-') f = -1; num = c - '0';
        while(c = getchar(), isdigit(c)) num = num * 10 + c - '0';
        return f * num;
    }
    int n[5], a[5][150009], f[5][150009], tree[150009 * 4];
    vector<int> fa[5][150009];
    void update(int rt) {tree[rt] = min(tree[lson], tree[rson]);}
    void build(int l, int r, int rt, int t) {
        if(l == r) {tree[rt] = f[t][l]; return ;}
        build(l, Mid, lson, t); build(Mid + 1, r, rson, t);
        update(rt);
    }
    int query(int l, int r, int L, int R, int rt) {
        if(L <= l && r <= R) return tree[rt];
        int ans = 0x3f3f3f3f3f3f3f3f;
        if(L <= Mid) ans = min(ans, query(l, Mid, L, R, lson));
        if(Mid <  R) ans = min(ans, query(Mid + 1, r, L, R, rson));
        return ans;
    }
    signed main()
    {
        memset(f, 0x3f, sizeof(f));
        for(int i = 1; i <= 4; i++) 
            n[i] = read();
        for(int i = 1; i <= 4; i++)
            for(int j = 1; j <= n[i]; j++) a[i][j] = read();
        for(int i = 2; i <= 4; i++) {
            int m = read();
            for(int j = 1; j <= m; j++) {
                int x = read(), y = read();
                fa[i][y].push_back(x);
            }
        }
        for(int i = 2; i <= 4; i++) {
            for(int j = 1; j <= n[i]; j++) {
                fa[i][j].push_back(n[i - 1] + 1);
                sort(fa[i][j].begin(), fa[i][j].end());
            }
        }
        for(int i = 1; i <= n[1]; i++)
            f[1][i] = a[1][i];
        build(1, n[1], 1, 1);
        for(int i = 2; i <= 4; i++) {
            for(int j = 1; j <= n[i]; j++) {
                int now = 0, minn = 0x3f3f3f3f3f3f3f3f;
                for(auto nxt : fa[i][j]) {
                    if(nxt - 1 >= now + 1) minn = min(minn, query(1, n[i - 1], now + 1, nxt - 1, 1));
                    now = nxt;
                }
                f[i][j] = min(f[i][j], minn + a[i][j]);
            }
            build(1, n[i], 1, i);
        }
        int ans = 0x3f3f3f3f3f3f3f3f;
        for(int j = 1; j <= n[4]; j++)
            ans = min(ans, f[4][j]);
        printf("%lld
    ", ans == 0x3f3f3f3f3f3f3f3f ? -1 : ans);
        return 0;
    }
    View Code
  • 相关阅读:
    java中栈内存和堆内存的简单理解
    java中构造函数与一般函数的区别

    另一部漫画
    海边的卡夫卡
    11-12
    这篇大概值一百万吧
    我的千岁寒
    11-9
    嗯……………股票已经涨的我不想上班了
  • 原文地址:https://www.cnblogs.com/onglublog/p/14406372.html
Copyright © 2020-2023  润新知