• pandas 基础操作 更新


    import pandas as pd
    import numpy as np
    
    import matplotlib.pyplot as plt
    

    创建一个Series,同时让pandas自动生成索引列

    s = pd.Series([1,3,5,np.nan,6,8])
    
    # 查看s
    s
    
    0    1.0
    1    3.0
    2    5.0
    3    NaN
    4    6.0
    5    8.0
    dtype: float64
    

    创建一个DataFrame数据框

    ### 创建一个DataFrame ,可以传入一个numpy array 可以自己构建索引以及列标
    dates = pd.date_range('2018-11-01',periods=7)
    #### 比如说生成一个时间序列,以20181101 为起始位置的,7个日期组成的时间序列,数据的类型为datetime64[ns]
    
    dates
    
    DatetimeIndex(['2018-11-01', '2018-11-02', '2018-11-03', '2018-11-04',
                   '2018-11-05', '2018-11-06', '2018-11-07'],
                  dtype='datetime64[ns]', freq='D')
    
    df = pd.DataFrame(np.random.randn(7,4),index= dates,columns=list('ABCD'))
    df
    # 产生随机正态分布的数据,7行4列,分别对应的index的长度以及column的长度
    
    A B C D
    2018-11-01 -0.170364 -0.237541 0.529903 0.660073
    2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
    2018-11-03 -0.518426 0.730866 -1.033830 0.712624
    2018-11-04 1.013527 0.270167 0.081805 0.178193
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027
    ### 同时用可以使用dict的实行创建DataFrame
    df2 = pd.DataFrame({"A":1,
                       "B":"20181101",
                       'C':np.array([3]*4,dtype='int32'),
                       'D':pd.Categorical(['test','train','test','train']),
                       "E":1.5},
                      )
    df2
    
    A B C D E
    0 1 20181101 3 test 1.5
    1 1 20181101 3 train 1.5
    2 1 20181101 3 test 1.5
    3 1 20181101 3 train 1.5
    df2.dtypes
    ### 查看数据框中的数据类型,常见的数据类型还有时间类型以及float类型
    
    A       int64
    B      object
    C       int32
    D    category
    E     float64
    dtype: object
    

    查看数据

    
    # 比如说看前5行
    df.head()
    
    A B C D
    2018-11-01 -0.170364 -0.237541 0.529903 0.660073
    2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
    2018-11-03 -0.518426 0.730866 -1.033830 0.712624
    2018-11-04 1.013527 0.270167 0.081805 0.178193
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208
    # 后4行
    df.tail(4)
    
    A B C D
    2018-11-04 1.013527 0.270167 0.081805 0.178193
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027
    # 查看DataFrame的索引
    df.index
    
    DatetimeIndex(['2018-11-01', '2018-11-02', '2018-11-03', '2018-11-04',
                   '2018-11-05', '2018-11-06', '2018-11-07'],
                  dtype='datetime64[ns]', freq='D')
    
    # 查看DataFrame的列索引
    df.columns
    
    
    Index(['A', 'B', 'C', 'D'], dtype='object')
    
    # 查看DataFrame的数据,将DataFrame转化为numpy array 的数据形式
    df.values
    
    array([[-0.1703643 , -0.23754121,  0.52990284,  0.66007285],
           [-0.15844565, -0.48853537,  0.08296043, -1.91357255],
           [-0.51842554,  0.73086567, -1.03382969,  0.71262388],
           [ 1.01352712,  0.27016714,  0.08180539,  0.17819344],
           [-0.89749689, -0.01627937, -0.23499323,  0.08120819],
           [-0.03058032,  0.54556063,  1.09112723, -0.13157934],
           [-0.31334198, -0.68817881, -0.41775393,  0.85502652]])
    

    数据的简单统计

    # 可以使用describe函数对DataFrame中的数值型数据进行统计
    df.describe()
    
    A B C D
    count 7.000000 7.000000 7.000000 7.000000
    mean -0.153590 0.016580 0.014174 0.063139
    std 0.590144 0.527860 0.680939 0.945526
    min -0.897497 -0.688179 -1.033830 -1.913573
    25% -0.415884 -0.363038 -0.326374 -0.025186
    50% -0.170364 -0.016279 0.081805 0.178193
    75% -0.094513 0.407864 0.306432 0.686348
    max 1.013527 0.730866 1.091127 0.855027
    df2.describe()
    ### 对于其他的数据类型的数据describe函数会自动过滤掉
    
    A C E
    count 4.0 4.0 4.0
    mean 1.0 3.0 1.5
    std 0.0 0.0 0.0
    min 1.0 3.0 1.5
    25% 1.0 3.0 1.5
    50% 1.0 3.0 1.5
    75% 1.0 3.0 1.5
    max 1.0 3.0 1.5
    ### DataFrame 的转置,将列索引与行索引进行调换,行数据与列数进行调换
    df.T
    
    2018-11-01 00:00:00 2018-11-02 00:00:00 2018-11-03 00:00:00 2018-11-04 00:00:00 2018-11-05 00:00:00 2018-11-06 00:00:00 2018-11-07 00:00:00
    A -0.170364 -0.158446 -0.518426 1.013527 -0.897497 -0.030580 -0.313342
    B -0.237541 -0.488535 0.730866 0.270167 -0.016279 0.545561 -0.688179
    C 0.529903 0.082960 -1.033830 0.081805 -0.234993 1.091127 -0.417754
    D 0.660073 -1.913573 0.712624 0.178193 0.081208 -0.131579 0.855027
    df
    
    A B C D
    2018-11-01 -0.170364 -0.237541 0.529903 0.660073
    2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
    2018-11-03 -0.518426 0.730866 -1.033830 0.712624
    2018-11-04 1.013527 0.270167 0.081805 0.178193
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027

    数据的排序

    df.sort_index(ascending=False)
    ### 降序,按照列进行降序,通过该索引列
    
    A B C D
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208
    2018-11-04 1.013527 0.270167 0.081805 0.178193
    2018-11-03 -0.518426 0.730866 -1.033830 0.712624
    2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
    2018-11-01 -0.170364 -0.237541 0.529903 0.660073
    
    print(df.sort_values(by=['B','A']))
    #  默认是升序,可以选择多指排序,先照B,后排A,如果B中的数据一样,则按照A中的大小进行排序
    df.sort_values(by='B')
    
                       A         B         C         D
    2018-11-07 -0.313342 -0.688179 -0.417754  0.855027
    2018-11-02 -0.158446 -0.488535  0.082960 -1.913573
    2018-11-01 -0.170364 -0.237541  0.529903  0.660073
    2018-11-05 -0.897497 -0.016279 -0.234993  0.081208
    2018-11-04  1.013527  0.270167  0.081805  0.178193
    2018-11-06 -0.030580  0.545561  1.091127 -0.131579
    2018-11-03 -0.518426  0.730866 -1.033830  0.712624
    
    A B C D
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027
    2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
    2018-11-01 -0.170364 -0.237541 0.529903 0.660073
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208
    2018-11-04 1.013527 0.270167 0.081805 0.178193
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579
    2018-11-03 -0.518426 0.730866 -1.033830 0.712624

    选择数据(类似于数据库中sql语句)

    df['A']
    # 取出单独的一列数据,等价于df.A
    
    2018-11-01   -0.170364
    2018-11-02   -0.158446
    2018-11-03   -0.518426
    2018-11-04    1.013527
    2018-11-05   -0.897497
    2018-11-06   -0.030580
    2018-11-07   -0.313342
    Freq: D, Name: A, dtype: float64
    
    # 通过[]进行行选择切片
    df[0:3]
    
    A B C D
    2018-11-01 -0.170364 -0.237541 0.529903 0.660073
    2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
    2018-11-03 -0.518426 0.730866 -1.033830 0.712624
    # 同时对于时间索引而言,可以直接使用比如
    df['2018-11-01':'2018-11-04']
    
    A B C D
    2018-11-01 -0.170364 -0.237541 0.529903 0.660073
    2018-11-02 -0.158446 -0.488535 0.082960 -1.913573
    2018-11-03 -0.518426 0.730866 -1.033830 0.712624
    2018-11-04 1.013527 0.270167 0.081805 0.178193

    另外可以使用标签来选择

    
    df.loc['2018-11-01']
    
    A   -0.170364
    B   -0.237541
    C    0.529903
    D    0.660073
    Name: 2018-11-01 00:00:00, dtype: float64
    
    #### 通过标签来进行多个轴上的进行选择
    df.loc[:,["A","B"]] # 等价于df[["A","B"]]
    
    A B
    2018-11-01 -0.170364 -0.237541
    2018-11-02 -0.158446 -0.488535
    2018-11-03 -0.518426 0.730866
    2018-11-04 1.013527 0.270167
    2018-11-05 -0.897497 -0.016279
    2018-11-06 -0.030580 0.545561
    2018-11-07 -0.313342 -0.688179
    df.loc["2018-11-01":"2018-11-03",["A","B"]]
    
    A B
    2018-11-01 -0.170364 -0.237541
    2018-11-02 -0.158446 -0.488535
    2018-11-03 -0.518426 0.730866
    #### 获得一个标量数据
    df.loc['2018-11-01','A']
    
    -0.17036430076617162
    

    通过位置获取数据

    df.iloc[3]  # 获得第四行的数据
    
    A    1.013527
    B    0.270167
    C    0.081805
    D    0.178193
    Name: 2018-11-04 00:00:00, dtype: float64
    
    df.iloc[1:3,1:4]  #  与numpy中的ndarray类似
    
    B C D
    2018-11-02 -0.488535 0.08296 -1.913573
    2018-11-03 0.730866 -1.03383 0.712624
    # 可以选取不连续的行或者列进行取值
    df.iloc[[1,3],[1,3]]
    
    B D
    2018-11-02 -0.488535 -1.913573
    2018-11-04 0.270167 0.178193
    #  对行进行切片处理
    df.iloc[1:3,:]
    
    A B C D
    2018-11-02 -0.158446 -0.488535 0.08296 -1.913573
    2018-11-03 -0.518426 0.730866 -1.03383 0.712624
    # 对列进行切片
    df.iloc[:,1:4]
    
    B C D
    2018-11-01 -0.237541 0.529903 0.660073
    2018-11-02 -0.488535 0.082960 -1.913573
    2018-11-03 0.730866 -1.033830 0.712624
    2018-11-04 0.270167 0.081805 0.178193
    2018-11-05 -0.016279 -0.234993 0.081208
    2018-11-06 0.545561 1.091127 -0.131579
    2018-11-07 -0.688179 -0.417754 0.855027
    # 获取特定的值
    df.iloc[1,3]
    
    -1.9135725473596013
    

    布尔值索引

    # 使用单列的数据作为条件进行筛选
    df[df.A>0]
    
    A B C D
    2018-11-04 1.013527 0.270167 0.081805 0.178193
     #很少用到,很少使用这种大范围的条件进行筛选
    df[df>0] 
    
    A B C D
    2018-11-01 NaN NaN 0.529903 0.660073
    2018-11-02 NaN NaN 0.082960 NaN
    2018-11-03 NaN 0.730866 NaN 0.712624
    2018-11-04 1.013527 0.270167 0.081805 0.178193
    2018-11-05 NaN NaN NaN 0.081208
    2018-11-06 NaN 0.545561 1.091127 NaN
    2018-11-07 NaN NaN NaN 0.855027
    # 使用isin()方法过滤
    df2.head()
    
    A B C D E
    0 1 20181101 3 test 1.5
    1 1 20181101 3 train 1.5
    2 1 20181101 3 test 1.5
    3 1 20181101 3 train 1.5
    df2[df2['D'].isin(['test'])]
    
    A B C D E
    0 1 20181101 3 test 1.5
    2 1 20181101 3 test 1.5

    设定数值(类似于sql update 或者add)

    • 设定一个新的列
    df['E'] = [1,2,3,4,5,6,7]
    
    df
    
    A B C D E
    2018-11-01 -0.170364 -0.237541 0.529903 0.660073 1
    2018-11-02 -0.158446 -0.488535 0.082960 -1.913573 2
    2018-11-03 -0.518426 0.730866 -1.033830 0.712624 3
    2018-11-04 1.013527 0.270167 0.081805 0.178193 4
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 5
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579 6
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 7
    • 通过标签设定新的值
    df.loc['2018-11-01','E']= 10  # 第一行,E列的数据修改为10
    
    df
    
    A B C D E
    2018-11-01 -0.170364 -0.237541 0.529903 0.660073 10
    2018-11-02 -0.158446 -0.488535 0.082960 -1.913573 2
    2018-11-03 -0.518426 0.730866 -1.033830 0.712624 3
    2018-11-04 1.013527 0.270167 0.081805 0.178193 4
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 5
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579 6
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 7
    df.iloc[1,4]=5000  # 第二行第五列数据修改为5000
    
    df
    
    A B C D E
    2018-11-01 -0.170364 -0.237541 0.529903 0.660073 10
    2018-11-02 -0.158446 -0.488535 0.082960 -1.913573 5000
    2018-11-03 -0.518426 0.730866 -1.033830 0.712624 3
    2018-11-04 1.013527 0.270167 0.081805 0.178193 4
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 5
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579 6
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 7
    df3 =df.copy()
    df3[df3<0]= -df3
    df3  # 都变成非负数
    
    A B C D E
    2018-11-01 0.170364 0.237541 0.529903 0.660073 10
    2018-11-02 0.158446 0.488535 0.082960 1.913573 5000
    2018-11-03 0.518426 0.730866 1.033830 0.712624 3
    2018-11-04 1.013527 0.270167 0.081805 0.178193 4
    2018-11-05 0.897497 0.016279 0.234993 0.081208 5
    2018-11-06 0.030580 0.545561 1.091127 0.131579 6
    2018-11-07 0.313342 0.688179 0.417754 0.855027 7

    缺失值处理

    df
    
    A B C D E
    2018-11-01 -0.170364 -0.237541 0.529903 0.660073 10
    2018-11-02 -0.158446 -0.488535 0.082960 -1.913573 5000
    2018-11-03 -0.518426 0.730866 -1.033830 0.712624 3
    2018-11-04 1.013527 0.270167 0.081805 0.178193 4
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 5
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579 6
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 7
    df['E']=[1,np.nan,2,np.nan,4,np.nan,6]
    
    df.loc['2018-11-01':'2018-11-03','D']=np.nan
    
    df
    
    A B C D E
    2018-11-01 -0.170364 -0.237541 0.529903 NaN 1.0
    2018-11-02 -0.158446 -0.488535 0.082960 NaN NaN
    2018-11-03 -0.518426 0.730866 -1.033830 NaN 2.0
    2018-11-04 1.013527 0.270167 0.081805 0.178193 NaN
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 4.0
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579 NaN
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 6.0
    • 去掉缺失值的行
    df4 = df.copy()
    
    df4.dropna(how='any')
    
    A B C D E
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 4.0
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 6.0
    df4.dropna(how='all')
    # """DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)""" 
    # aixs 轴0或者1 index或者columns
    # how 方式
    # thresh 超过阈值个数的缺失值
    # subset 那些字段的处理
    # inplace 是否直接在原数据框中的替换
    
    A B C D E
    2018-11-01 -0.170364 -0.237541 0.529903 NaN 1.0
    2018-11-02 -0.158446 -0.488535 0.082960 NaN NaN
    2018-11-03 -0.518426 0.730866 -1.033830 NaN 2.0
    2018-11-04 1.013527 0.270167 0.081805 0.178193 NaN
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 4.0
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579 NaN
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 6.0
    • 对缺失值就行填充
    df4.fillna(1000)
    
    A B C D E
    2018-11-01 -0.170364 -0.237541 0.529903 1000.000000 1.0
    2018-11-02 -0.158446 -0.488535 0.082960 1000.000000 1000.0
    2018-11-03 -0.518426 0.730866 -1.033830 1000.000000 2.0
    2018-11-04 1.013527 0.270167 0.081805 0.178193 1000.0
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 4.0
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579 1000.0
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 6.0
    • 对数据进行布尔值进行填充
    pd.isnull(df4)
    
    A B C D E
    2018-11-01 False False False True False
    2018-11-02 False False False True True
    2018-11-03 False False False True False
    2018-11-04 False False False False True
    2018-11-05 False False False False False
    2018-11-06 False False False False True
    2018-11-07 False False False False False

    数据操作

    #统计的工作一般情况下都不包含缺失值,
    df4.mean() 
    #  默认是对列进行求平均,沿着行方向也就是axis=0
    
    A   -0.153590
    B    0.016580
    C    0.014174
    D    0.245712
    E    3.250000
    dtype: float64
    
    df4.mean(axis=1)
    #  沿着列方向求每行的平均
    
    2018-11-01    0.280499
    2018-11-02   -0.188007
    2018-11-03    0.294653
    2018-11-04    0.385923
    2018-11-05    0.586488
    2018-11-06    0.368632
    2018-11-07    1.087150
    Freq: D, dtype: float64
    
     # 对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:
    s = pd.Series([1,3,4,np.nan,6,7,8],index=dates)
    s
    
    2018-11-01    1.0
    2018-11-02    3.0
    2018-11-03    4.0
    2018-11-04    NaN
    2018-11-05    6.0
    2018-11-06    7.0
    2018-11-07    8.0
    Freq: D, dtype: float64
    
    df4.sub(s,axis='index')
    
    A B C D E
    2018-11-01 -1.170364 -1.237541 -0.470097 NaN 0.0
    2018-11-02 -3.158446 -3.488535 -2.917040 NaN NaN
    2018-11-03 -4.518426 -3.269134 -5.033830 NaN -2.0
    2018-11-04 NaN NaN NaN NaN NaN
    2018-11-05 -6.897497 -6.016279 -6.234993 -5.918792 -2.0
    2018-11-06 -7.030580 -6.454439 -5.908873 -7.131579 NaN
    2018-11-07 -8.313342 -8.688179 -8.417754 -7.144973 -2.0
    df4
    
    A B C D E
    2018-11-01 -0.170364 -0.237541 0.529903 NaN 1.0
    2018-11-02 -0.158446 -0.488535 0.082960 NaN NaN
    2018-11-03 -0.518426 0.730866 -1.033830 NaN 2.0
    2018-11-04 1.013527 0.270167 0.081805 0.178193 NaN
    2018-11-05 -0.897497 -0.016279 -0.234993 0.081208 4.0
    2018-11-06 -0.030580 0.545561 1.091127 -0.131579 NaN
    2018-11-07 -0.313342 -0.688179 -0.417754 0.855027 6.0
    df4.apply(np.cumsum)
    
    A B C D E
    2018-11-01 -0.170364 -0.237541 0.529903 NaN 1.0
    2018-11-02 -0.328810 -0.726077 0.612863 NaN NaN
    2018-11-03 -0.847235 0.004789 -0.420966 NaN 3.0
    2018-11-04 0.166292 0.274956 -0.339161 0.178193 NaN
    2018-11-05 -0.731205 0.258677 -0.574154 0.259402 7.0
    2018-11-06 -0.761786 0.804237 0.516973 0.127822 NaN
    2018-11-07 -1.075128 0.116059 0.099219 0.982849 13.0
    df4.apply(lambda x: x.max()-x.min())
    
    A    1.911024
    B    1.419044
    C    2.124957
    D    0.986606
    E    5.000000
    dtype: float64
    

    统计个数与离散化

    s = pd.Series(np.random.randint(0,7,size=15))
    s
    
    0     5
    1     4
    2     1
    3     2
    4     1
    5     0
    6     2
    7     6
    8     4
    9     3
    10    1
    11    1
    12    1
    13    3
    14    2
    dtype: int32
    
    s.value_counts()
    # 统计元素的个数,并按照元素统计量进行排序,未出现的元素不会显示出来
    
    1    5
    2    3
    4    2
    3    2
    6    1
    5    1
    0    1
    dtype: int64
    
    s.reindex(range(0,7))
    # 按照固定的顺序输出元素的个数统计
    
    0    5
    1    4
    2    1
    3    2
    4    1
    5    0
    6    2
    dtype: int32
    
    s.mode()
    #  众数 
    
    0    1
    dtype: int32
    
    • 离散化
    # 连续值转化为离散值,可以使用cut函数进行操作(bins based on vlaues) qcut (bins based on sample
    # quantiles) 函数
    arr = np.random.randint(0,20,size=15)  # 正态分布
    arr
    
    array([ 5, 18, 13, 16, 16,  1, 15, 11,  0, 17, 16, 18, 15, 12, 13])
    
    factor = pd.cut(arr,3)
    factor
    
    [(-0.018, 6.0], (12.0, 18.0], (12.0, 18.0], (12.0, 18.0], (12.0, 18.0], ..., (12.0, 18.0], (12.0, 18.0], (12.0, 18.0], (6.0, 12.0], (12.0, 18.0]]
    Length: 15
    Categories (3, interval[float64]): [(-0.018, 6.0] < (6.0, 12.0] < (12.0, 18.0]]
    
    pd.value_counts(factor)
    
    (12.0, 18.0]     10
    (-0.018, 6.0]     3
    (6.0, 12.0]       2
    dtype: int64
    
    factor1 = pd.cut(arr,[-1,5,10,15,20])
    
    pd.value_counts(factor1)
    
    (15, 20]    6
    (10, 15]    6
    (-1, 5]     3
    (5, 10]     0
    dtype: int64
    
    factor2 = pd.qcut(arr,[0,0.25,0.5,0.75,1])
    
    pd.value_counts(factor2)
    
    (11.5, 15.0]      5
    (-0.001, 11.5]    4
    (16.0, 18.0]      3
    (15.0, 16.0]      3
    dtype: int64
    

    pandas 处理字符串(单独一个大的章节,这人不做详述)

    数据合并

    • concat
    • merge(类似于sql数据库中的join)
    • append

    首先看concat合并数据框

    df = pd.DataFrame(np.random.randn(10,4))  #  10行列的标准正态分布数据框
    df
    
    0 1 2 3
    0 0.949746 -0.050767 1.478622 -0.239901
    1 -0.297120 -0.562589 0.371837 1.180715
    2 0.953856 0.492295 0.821156 -0.323328
    3 0.016153 1.554225 -1.166304 -0.904040
    4 0.204763 -0.951291 -1.317620 0.672900
    5 2.241006 -0.925746 -1.961408 0.853367
    6 2.217133 -0.430812 0.518926 1.741445
    7 -0.571104 -0.437305 -0.902241 0.786231
    8 -2.511387 0.523760 1.811622 -0.777296
    9 0.252690 0.901952 0.619614 -0.006631
    d1,d2,d3  = df[:3],df[3:7],df[7:]
    d1,d2,d3
    
    (          0         1         2         3
     0  0.949746 -0.050767  1.478622 -0.239901
     1 -0.297120 -0.562589  0.371837  1.180715
     2  0.953856  0.492295  0.821156 -0.323328,
               0         1         2         3
     3  0.016153  1.554225 -1.166304 -0.904040
     4  0.204763 -0.951291 -1.317620  0.672900
     5  2.241006 -0.925746 -1.961408  0.853367
     6  2.217133 -0.430812  0.518926  1.741445,
               0         1         2         3
     7 -0.571104 -0.437305 -0.902241  0.786231
     8 -2.511387  0.523760  1.811622 -0.777296
     9  0.252690  0.901952  0.619614 -0.006631)
    
    pd.concat([d1,d2,d3])
    #合并三个数据框,数据结构相同,通常合并相同结构的数据,数据框中的字段一致,类似于数据添加新的数据来源
    
    0 1 2 3
    0 0.949746 -0.050767 1.478622 -0.239901
    1 -0.297120 -0.562589 0.371837 1.180715
    2 0.953856 0.492295 0.821156 -0.323328
    3 0.016153 1.554225 -1.166304 -0.904040
    4 0.204763 -0.951291 -1.317620 0.672900
    5 2.241006 -0.925746 -1.961408 0.853367
    6 2.217133 -0.430812 0.518926 1.741445
    7 -0.571104 -0.437305 -0.902241 0.786231
    8 -2.511387 0.523760 1.811622 -0.777296
    9 0.252690 0.901952 0.619614 -0.006631

    merge方式合并(数据库中的join)

    left = pd.DataFrame({'key':['foo','foo'],"lval":[1,2]})
    right = pd.DataFrame({'key':['foo','foo'],'rval':[4,5]})
    
    left
    
    key lval
    0 foo 1
    1 foo 2
    right
    
    key rval
    0 foo 4
    1 foo 5
    pd.merge(left,right,on='key')
    
    key lval rval
    0 foo 1 4
    1 foo 1 5
    2 foo 2 4
    3 foo 2 5
    left = pd.DataFrame({'key':['foo','bar'],"lval":[1,2]})
    right = pd.DataFrame({'key':['foo','bar'],'rval':[4,5]})
    pd.merge(left,right,on='key')
    
    key lval rval
    0 foo 1 4
    1 bar 2 5
    left
    
    key lval
    0 foo 1
    1 bar 2
    right
    
    key rval
    0 foo 4
    1 bar 5

    Append方式合并数据

    #  与concat 类似,常用的方法可以参考一下日子
    df = pd.DataFrame(np.random.randn(8,4),columns=['A','B','C','D'])
    df
    
    A B C D
    0 1.825997 -0.331086 -0.067143 0.747226
    1 -0.027497 0.861639 0.928621 -2.549617
    2 -0.546645 -0.072253 -0.788483 0.484140
    3 -0.472240 -1.776993 -1.647407 0.170596
    4 -0.099453 0.380143 -0.890510 1.233741
    5 0.351915 0.137522 -1.165938 1.128146
    6 0.558442 -1.047060 -0.598197 -1.979876
    7 0.067321 -1.037666 -1.140675 -0.098562
    ## 
    d1 = df.iloc[3]
    df.append(d1,ignore_index= True)
    
    A B C D
    0 1.825997 -0.331086 -0.067143 0.747226
    1 -0.027497 0.861639 0.928621 -2.549617
    2 -0.546645 -0.072253 -0.788483 0.484140
    3 -0.472240 -1.776993 -1.647407 0.170596
    4 -0.099453 0.380143 -0.890510 1.233741
    5 0.351915 0.137522 -1.165938 1.128146
    6 0.558442 -1.047060 -0.598197 -1.979876
    7 0.067321 -1.037666 -1.140675 -0.098562
    8 -0.472240 -1.776993 -1.647407 0.170596

    分组操作Groupby操作

    df = pd.DataFrame({"A":['foo','bar','foo','bar'],
                      "B":['one','one','two','three'],
                      "C":np.random.randn(4),
                      "D":np.random.randn(4)})
    df
    
    A B C D
    0 foo one 0.938910 0.505163
    1 bar one 0.660543 0.353860
    2 foo two 0.520309 1.157462
    3 bar three -1.054927 0.290693
    df.groupby('A').sum()
    
    C D
    A
    bar -0.394384 0.644553
    foo 1.459219 1.662625
    df.groupby('A').size()
    
    A
    bar    2
    foo    2
    dtype: int64
    
    df.groupby(['A',"B"]).sum()
    
    C D
    A B
    bar one 0.660543 0.353860
    three -1.054927 0.290693
    foo one 0.938910 0.505163
    two 0.520309 1.157462
    df.groupby(['A',"B"]).size()
    
    A    B    
    bar  one      1
         three    1
    foo  one      1
         two      1
    dtype: int64
    

    reshape操作

    tuples = list(zip(*[['bar','bar','baz','baz','foo','foo','qux','qux'],
                       ['one','two','one','two','one','two','one','two']]))
    
    index = pd.MultiIndex.from_tuples(tuples,names=['first','second'])
    df = pd.DataFrame(np.random.randn(8,2),index= index,columns=['A','B'])
    df2 =  df[:4]
    
    df2
    
    A B
    first second
    bar one 0.510758 0.641370
    two 0.481230 -0.470894
    baz one -0.076294 0.121247
    two 0.378507 -1.358932
    df
    
    A B
    first second
    bar one 0.510758 0.641370
    two 0.481230 -0.470894
    baz one -0.076294 0.121247
    two 0.378507 -1.358932
    foo one -0.873012 0.531595
    two 0.266968 -0.393124
    qux one 0.981866 1.205994
    two 0.265772 0.132489

    stack 与unstack 方法

    df2_stacked = df2.stack()  
    #  将column也作为index
    
    df2_stacked
    
    first  second   
    bar    one     A    0.510758
                   B    0.641370
           two     A    0.481230
                   B   -0.470894
    baz    one     A   -0.076294
                   B    0.121247
           two     A    0.378507
                   B   -1.358932
    dtype: float64
    
    df2_stacked.unstack()  #  回复到原来的状态
    
    A B
    first second
    bar one 0.510758 0.641370
    two 0.481230 -0.470894
    baz one -0.076294 0.121247
    two 0.378507 -1.358932
    df2_stacked
    
    first  second   
    bar    one     A    0.510758
                   B    0.641370
           two     A    0.481230
                   B   -0.470894
    baz    one     A   -0.076294
                   B    0.121247
           two     A    0.378507
                   B   -1.358932
    dtype: float64
    
    df2_stacked.unstack(1)
    
    second one two
    first
    bar A 0.510758 0.481230
    B 0.641370 -0.470894
    baz A -0.076294 0.378507
    B 0.121247 -1.358932
    df2_stacked.unstack(0)
    
    first bar baz
    second
    one A 0.510758 -0.076294
    B 0.641370 0.121247
    two A 0.481230 0.378507
    B -0.470894 -1.358932

    pivot_table 透视表

    df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,                    'B' : ['A', 'B', 'C'] * 4,
                     'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
                      'D' : np.random.randn(12),
                     'E' : np.random.randn(12)})
    
    df
    
    A B C D E
    0 one A foo 0.006247 -0.894827
    1 one B foo 1.653974 -0.340107
    2 two C foo -1.627485 -1.011403
    3 three A bar -0.716002 1.533422
    4 one B bar 0.422688 -0.807675
    5 one C bar 0.264818 0.249770
    6 two A foo 0.643288 -1.166616
    7 three B foo 0.348041 -0.659099
    8 one C foo 1.593486 -1.098731
    9 one A bar -0.389344 0.919528
    10 two B bar -1.407450 1.269716
    11 three C bar -0.172672 0.883970
    pd.pivot_table(df,values='D',index=['A','B'],columns=['C'],aggfunc=np.mean)
    
    C bar foo
    A B
    one A -0.389344 0.006247
    B 0.422688 1.653974
    C 0.264818 1.593486
    three A -0.716002 NaN
    B NaN 0.348041
    C -0.172672 NaN
    two A NaN 0.643288
    B -1.407450 NaN
    C NaN -1.627485
    pd.pivot_table(df,values='D',index=['A','B'],columns=['C'],aggfunc=np.sum)
    
    C bar foo
    A B
    one A -0.389344 0.006247
    B 0.422688 1.653974
    C 0.264818 1.593486
    three A -0.716002 NaN
    B NaN 0.348041
    C -0.172672 NaN
    two A NaN 0.643288
    B -1.407450 NaN
    C NaN -1.627485
    pd.pivot_table(df,values='D',index=['A','B'],columns=['C'],aggfunc=np.mean,fill_value=0)
    
    C bar foo
    A B
    one A -0.389344 0.006247
    B 0.422688 1.653974
    C 0.264818 1.593486
    three A -0.716002 0.000000
    B 0.000000 0.348041
    C -0.172672 0.000000
    two A 0.000000 0.643288
    B -1.407450 0.000000
    C 0.000000 -1.627485
    df1 = pd.pivot_table(df,values='D',index=['A','B'],columns=['C'],aggfunc=np.mean,fill_value=0)
    
    df1.index
    
    MultiIndex(levels=[['one', 'three', 'two'], ['A', 'B', 'C']],
               labels=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]],
               names=['A', 'B'])
    
    df1.stack()
    
    A      B  C  
    one    A  bar   -0.389344
              foo    0.006247
           B  bar    0.422688
              foo    1.653974
           C  bar    0.264818
              foo    1.593486
    three  A  bar   -0.716002
              foo    0.000000
           B  bar    0.000000
              foo    0.348041
           C  bar   -0.172672
              foo    0.000000
    two    A  bar    0.000000
              foo    0.643288
           B  bar   -1.407450
              foo    0.000000
           C  bar    0.000000
              foo   -1.627485
    dtype: float64
    
    df1.unstack()
    
    C bar foo
    B A B C A B C
    A
    one -0.389344 0.422688 0.264818 0.006247 1.653974 1.593486
    three -0.716002 0.000000 -0.172672 0.000000 0.348041 0.000000
    two 0.000000 -1.407450 0.000000 0.643288 0.000000 -1.627485
    df1.unstack(1)
    
    C bar foo
    B A B C A B C
    A
    one -0.389344 0.422688 0.264818 0.006247 1.653974 1.593486
    three -0.716002 0.000000 -0.172672 0.000000 0.348041 0.000000
    two 0.000000 -1.407450 0.000000 0.643288 0.000000 -1.627485
    df1.unstack(0)
    
    C bar foo
    A one three two one three two
    B
    A -0.389344 -0.716002 0.00000 0.006247 0.000000 0.643288
    B 0.422688 0.000000 -1.40745 1.653974 0.348041 0.000000
    C 0.264818 -0.172672 0.00000 1.593486 0.000000 -1.627485

    至此,pandas的基础的使用介绍也就结束了,后续会有专题性质的分析,包括(字符串处理,apply的使用,数据合并,透视表,时间序列的分析)

  • 相关阅读:
    redis同步指定key数据到其他redis中
    Golang 生成随机数
    怎么理解“平均负载”? 进行分析等
    Golang打印空心金字塔for循环实现
    python十几行代码实现三级菜单
    mysql增量恢复
    python内建函数
    python练习题总结
    迭代器和生成器
    python基础数据类型
  • 原文地址:https://www.cnblogs.com/onemorepoint/p/10093098.html
Copyright © 2020-2023  润新知