• P2754 [CTSC1999]家园


    (color{#0066ff}{题目描述})

    由于人类对自然资源的消耗,人们意识到大约在 2300 年之后,地球就不能再居住了。于是在月球上建立了新的绿地,以便在需要时移民。令人意想不到的是,2177 年冬由于未知的原因,地球环境发生了连锁崩溃,人类必须在最短的时间内迁往月球。

    现有 n 个太空站位于地球与月球之间,且有 m 艘公共交通太空船在其间来回穿梭。每个太空站可容纳无限多的人,而每艘太空船 i 只可容纳 H[i]个人。每艘太空船将周期性地停靠一系列的太空站,例如:(1,3,4)表示该太空船将周期性地停靠太空站 134134134…。每一艘太空船从一个太空站驶往任一太空站耗时均为 1。人们只能在太空船停靠太空站(或月球、地球)时上、下船。

    初始时所有人全在地球上,太空船全在初始站。试设计一个算法,找出让所有人尽快地全部转移到月球上的运输方案。

    对于给定的太空船的信息,找到让所有人尽快地全部转移到月球上的运输方案。

    (color{#0066ff}{输入格式})

    第 1 行有 3 个正整数 n(太空站个数),m(太空船个数)和 k(需要运送的地球上的人的个数)。其中 n<=13 m<=20, 1<=k<=50。

    接下来的 m 行给出太空船的信息。第 i+1 行说明太空船 pi。第 1 个数表示 pi 可容纳的人数 Hpi;第 2 个数表示 pi 一个周期停靠的太空站个数 r,1<=r<=n+2;随后 r 个数是停靠的太空站的编号(Si1,Si2,…,Sir),地球用 0 表示,月球用-1 表示。

    时刻 0 时,所有太空船都在初始站,然后开始运行。在时刻 1,2,3…等正点时刻各艘太空船停靠相应的太空站。人只有在 0,1,2…等正点时刻才能上下太空船。

    (color{#0066ff}{输出格式})

    程序运行结束时,将全部人员安全转移所需的时间输出。如果问题

    无解,则输出 0。

    (color{#0066ff}{输入样例})

    2 2 1
    1 3 0 1 2
    1 3 1 2 -1
    

    (color{#0066ff}{输出样例})

    5
    

    (color{#0066ff}{数据范围与提示})

    none

    (color{#0066ff}{题解})

    注意,比如有两辆车,在某一时刻,一个从1到2,一个从2到3,那么人可不能在2时间内到3

    也就是说,每次在网络流只能流1

    可以利用分层的思想

    枚举时间,每个时间建立一层空间站的图

    起点只连地球,每层的月球都向终点连

    直到dinic的最大流比k大就输出就行了

    注意判无解

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #define _ 0
    #define LL long long
    inline LL in() {
    	LL x = 0, f = 1; char ch;
    	while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    	while(isdigit(ch)) x = x * 10 + (ch ^ 48), ch = getchar();
    	return x * f;
    }
    struct node {
    	int to, dis;
    	node *nxt, *rev;
    	node(int to = 0, int dis = 0, node *nxt = NULL):to(to), dis(dis), nxt(nxt) {}
    	void *operator new (size_t) {
    		static node *S = NULL, *T = NULL;
    		return ((S == T) && (T = (S = new node[1024]) + 1024)),S++; 
    	}
    };
    const int inf = 0x7fffffff;
    int n, m, s, t, k, ans;
    const int maxn = 1000500;
    typedef node* nod;
    nod head[maxn], cur[maxn];
    int dep[maxn], init[maxn], to[55][55], zz[55];
    std::queue<int> q;
    inline void add(int from, int to, int dis) {
    	nod o = new node(to, dis, head[from]);
    	head[from] = o;
    }
    inline void link(int from, int to, int dis) {
    	add(from, to, dis);
    	add(to, from, 0);
    	head[from]->rev = head[to];
    	head[to]->rev = head[from];
    }
    inline bool bfs() {
    	for(int i = s; i <= t; i++) cur[i] = head[i], dep[i] = 0;
    	dep[s] = 1;
    	q.push(s);
    	while(!q.empty()) {
    		int tp = q.front();
    		q.pop();
    		for(nod i = head[tp]; i; i = i->nxt) {
    			if(!dep[i->to] && i->dis > 0) {
    				dep[i->to] = dep[tp] + 1;
    				q.push(i->to);
    			}
    		}
    	}
    	return dep[t];
    }
    inline int dfs(int x, int change) {
    	if(x == t || !change) return change;
    	int flow = 0, ls;
    	for(nod i = cur[x]; i; i = i->nxt) {
    		cur[x] = i;
    		if(dep[i->to] == dep[x] + 1 && (ls = dfs(i->to, std::min(change, i->dis)))) {
    			change -= ls;
    			flow += ls;
    			i->dis -= ls;
    			i->rev->dis += ls;
    			if(!change) break;
    		}
    	}
    	return flow;
    }
    int main() {
    	n = in(), m = in(), k = in();
    	int num = 0, len = n + 2;
    	s = 0, t = 905050;
    	for(int i = 1; i <= m; i++) {
    		init[i] = in();
    		zz[i] = 1;
    		to[i][0] = in();
    		for(int j = 1; j <= to[i][0]; j++) {
    			to[i][j] = in();
    			if(to[i][j] == 0) to[i][j] = n + 1;
    			if(to[i][j] == -1) to[i][j] = n + 2;
    		}
    	}
    	link(s, n+1, inf);
    	while(1) {	
    		ans++;
    		if(ans != 1)
    			for(int i = 1; i <= len; i++)
    				link(i + len * (ans - 2), i + len * (ans - 1), inf); 
    		for(int i = 1; i <= m; i++) {
    			int now = to[i][zz[i]];
    			zz[i]++, zz[i] %= to[i][0];
    			if(!zz[i]) zz[i] = to[i][0];
    			int go = to[i][zz[i]];
    			link(now + len * (ans - 1), go + len * ans, init[i]);
    		}
    		link(len + len * ans, t, inf);
    		while(bfs()) num += dfs(s, inf);
    		if(num >= k) break;
    		if(ans == 498) break;
    	}
    	printf("%d", ans == 498? 0 : ans);
    	return 0 ;
    }
    
  • 相关阅读:
    57.大数据线性处理csdn数据(fread,fwrite) 百万数据秒读数据
    56.fread fwrite
    ZOJ 2724 Windows Message Queue (二叉堆,优先队列)
    priority_queue用法(转载)
    Runtime Error(ACCESS_VIOLATION)
    POJ 2309 BST(二叉搜索树)
    POJ 2255 Tree Recovery
    [转载]C++Assert()函数
    POJ 2499 Binary Tree
    POJ 3437 Tree Grafting
  • 原文地址:https://www.cnblogs.com/olinr/p/10123475.html
Copyright © 2020-2023  润新知