题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数
推式子
首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd恰好为1
然后就可以反演了
下面手误把所有的H都打成了R
(sum_{i_1=L}^Rsum_{i_2=L}^Rdotssum_{i_N=L}^R[gcd(i_1,i_2,dots,i_N)=1])
(sum_{i_1=L}^Rsum_{i_2=L}^Rdotssum_{i_N=L}^Rsum_{d|i_1,d|i_2,dots,d|i_N}mu(d))
(sum_{d=1}^Rmu(d)left(frac{R}d-frac{L-1}d ight)^N)
显然可以打数论分块
但是这道题H范围达到10的9次方,果断杜教筛
注意由于我们的d是枚举到R的(因为右边式子的关系不是相乘,而是相减,所以大于L的项也有效)而>=L的数整除L-1的值为0,所以会导致除法爆炸,所以需要特判,详细请见代码
#include <cstdio>
#include <utility>
#include <map>
using namespace std;
int p = 1000000007, fuck = 2000000;
int n, k, l, h;
bool vis[2000010];
int prime[2000000], tot, mu[2000010];
map<int, int> memory;
int qpow(int x, int y)
{
int res = 1;
for (x %= p; y > 0; y >>= 1, x = x * (long long)x % p) if (y & 1) res = res * (long long)x % p;
return res;
}
int chumu(int x)
{
if (x <= fuck) return mu[x];
if (memory.count(x)) return memory[x];
int res = 1;
for (int i = 2, j; i <= x; i = j + 1)
{
j = x / (x / i);
res -= (j - i + 1) * chumu(x / i);
}
return memory[x] = res;
}
int main()
{
scanf("%d%d%d%d", &n, &k, &l, &h);
h /= k, l = (l - 1) / k;
mu[1] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == false) prime[++tot] = i, mu[i] = -1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
mu[i] += mu[i - 1];
}
int res = 0;
for (int i = 1, j; i <= h; i = j + 1)
{
j = min(h / (h / i), l / i == 0 ? h : l / (l / i));
res += qpow((h / i - l / i), n) * (long long)(chumu(j) - chumu(i - 1)) % p;
res %= p;
if (res < 0) res += p;
}
printf("%d
", res);
return 0;
}