• 动态规划—背包问题(01背包、完全背包、多重背包)


    01背包问题

    N件物品和一个容量为C的背包。第i件物品的费用是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

     

    w[i] 表示物品i的重量

    v[i] 表示物品i的价值

    C 表示背包的容量

    dp[i][c]表示前i件物品恰放入一个容量为c的背包可以获得的最大价值

     

    状态转移方程:

    二维: dp[i][c] = max(dp[i-1][c],dp[i-1][c-w[i]]+v[i])

    一维: dp[c] = max(dp[c],dp[c-w[i]]+v[i])  //max里的dp[c]dp[c-w[i]]保存的是状态dp[i-1][c]和状态dp[i-1][c-w[i]]的值

     

    01背包 降维代码:

    memset(dp,0,sizeof(dp));   //init

    for(int i=1; i<=n; i++)

            for(int c=C; c>=w[i]; c--)  //注意,c要由C倒推到w[i],c<w[i],dp[c] = dp[c]; 所以不用写了...

                   dp[c] = max(dp[c],dp[c-w[i]]+v[i]);     //c要倒推才能保证在推dp[c],max里的dp[c]dp[c-w[i]]保存的是状态dp[i-1][c]和状态dp[i-1][c-w[i]]的值

     

     

    完全背包问题

    N种物品和一个容量为C的背包,每种物品都有无限件可用。第i种物品的费用是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大

     

    状态转移方程:

    二维: dp[i][c] = max(dp[i-1][c],dp[i][c-w[i]]+v[i])

    一维: dp[c] = max(dp[c],dp[c-w[i]]+v[i])  //max里的dp[c]dp[c-w[i]]保存的是状态dp[i-1][c]和状态dp[i][c-w[i]]的值

     

    完全背包 降维代码:

    memset(dp,0,sizeof(dp));   //init

    for(int i=1; i<=n; i++)

            for(int c=w[i]; c<=C; c--)   //注意,c要正推

                   dp[c] = max(dp[c],dp[c-w[i]]+v[i]);     //c要正推才能保证在推dp[c],max里的dp[c]dp[c-w[i]]保存的是状态dp[i-1][c]和状态dp[i][c-w[i]]的值

     

    多重背包问题

    N种物品和一个容量为C的背包,每种物品的数量有限,i种物品的费用是w[i],价值是v[i],数量为n[i]

    可将该问题转化为01背包和完全背包问题:

    如果w[i]*n[i] > C, 按照完全背包问题进行求解;

    如果w[i]*n[i] < C, 按照01背包问题进行求解。

  • 相关阅读:
    《Linux系统free命令的使用》学习笔记
    《postfix MAIL服务搭建(第一篇):》RHEL6
    RHEL(RedHat Enterprise Linux)5/6 ISO镜像下载
    《samba搭建win客户端和linux客户端的区别》
    《怎样实现通过shell脚本将用户踢出系统》
    《DDNS服务器的搭建和案例解决方法》
    《Usermod:user lee is currently logged in 家目录不能改变解决方法》
    你们看不懂为什么写这个博客吧
    JS几种数组遍历方式以及性能分析对比
    从概念到业务来看 To B 和 To C 产品区别在哪?
  • 原文地址:https://www.cnblogs.com/jmliao/p/9241091.html
Copyright © 2020-2023  润新知