• python3 multiprocessing 模块


    多进程 Multiprocessing 模块

    multiprocessing 模块官方说明文档

    Process 类

    Process 类用来描述一个进程对象。创建子进程的时候,只需要传入一个执行函数和函数的参数即可完成 Process 示例的创建。

    • star() 方法启动进程,
    • join() 方法实现进程间的同步,等待所有进程退出。
    • close() 用来阻止多余的进程涌入进程池 Pool 造成进程阻塞。
    multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)
    • 1
    • target 是函数名字,需要调用的函数
    • args 函数需要的参数,以 tuple 的形式传入

    示例:

    import multiprocessing
    import os
    
    def run_proc(name):
        print('Child process {0} {1} Running '.format(name, os.getpid()))
    
    if __name__ == '__main__':
        print('Parent process {0} is Running'.format(os.getpid()))
        for i in range(5):
            p = multiprocessing.Process(target=run_proc, args=(str(i),))
            print('process start')
            p.start()
        p.join()
        print('Process close')

    结果:

    Parent process 809 is Running
    process start
    process start
    process start
    process start
    process start
    Child process 0 810 Running 
    Child process 1 811 Running 
    Child process 2 812 Running 
    Child process 3 813 Running 
    Child process 4 814 Running 
    Process close

    Pool

    Pool 可以提供指定数量的进程供用户使用,默认是 CPU 核数。当有新的请求提交到 Poll 的时候,如果池子没有满,会创建一个进程来执行,否则就会让该请求等待。
    - Pool 对象调用 join 方法会等待所有的子进程执行完毕
    - 调用 join 方法之前,必须调用 close
    - 调用 close 之后就不能继续添加新的 Process 了

    pool.apply_async

    apply_async 方法用来同步执行进程,允许多个进程同时进入池子。

    import multiprocessing
    import os
    import time
    
    def run_task(name):
        print('Task {0} pid {1} is running, parent id is {2}'.format(name, os.getpid(), os.getppid()))
        time.sleep(1)
        print('Task {0} end.'.format(name))
    
    if __name__ == '__main__':
        print('current process {0}'.format(os.getpid()))
        p = multiprocessing.Pool(processes=3)
        for i in range(6):
            p.apply_async(run_task, args=(i,))
        print('Waiting for all subprocesses done...')
        p.close()
        p.join()
        print('All processes done!')

    结果:

    current process 921
    Waiting for all subprocesses done...
    Task 0 pid 922 is running, parent id is 921
    Task 1 pid 923 is running, parent id is 921
    Task 2 pid 924 is running, parent id is 921
    Task 0 end.
    Task 3 pid 922 is running, parent id is 921
    Task 1 end.
    Task 4 pid 923 is running, parent id is 921
    Task 2 end.
    Task 5 pid 924 is running, parent id is 921
    Task 3 end.
    Task 4 end.
    Task 5 end.
    All processes done!

    pool.apply

    apply(func[, args[, kwds]])

    该方法只能允许一个进程进入池子,在一个进程结束之后,另外一个进程才可以进入池子。

    import multiprocessing
    import os
    import time
    
    def run_task(name):
        print('Task {0} pid {1} is running, parent id is {2}'.format(name, os.getpid(), os.getppid()))
        time.sleep(1)
        print('Task {0} end.'.format(name))
    
    if __name__ == '__main__':
        print('current process {0}'.format(os.getpid()))
        p = multiprocessing.Pool(processes=3)
        for i in range(6):
            p.apply(run_task, args=(i,))
        print('Waiting for all subprocesses done...')
        p.close()
        p.join()
        print('All processes done!')

    结果:

    Task 0 pid 928 is running, parent id is 927
    Task 0 end.
    Task 1 pid 929 is running, parent id is 927
    Task 1 end.
    Task 2 pid 930 is running, parent id is 927
    Task 2 end.
    Task 3 pid 928 is running, parent id is 927
    Task 3 end.
    Task 4 pid 929 is running, parent id is 927
    Task 4 end.
    Task 5 pid 930 is running, parent id is 927
    Task 5 end.
    Waiting for all subprocesses done...
    All processes done!

    Queue 进程间通信

    Queue 用来在多个进程间通信。Queue 有两个方法,get 和 put。

    put 方法

    Put 方法用来插入数据到队列中,有两个可选参数,blocked 和 timeout。
    - blocked = True(默认值),timeout 为正

    该方法会阻塞 timeout 指定的时间,直到该队列有剩余空间。如果超时,抛出 Queue.Full 异常。

    • blocked = False
    如果 Queue 已满,立刻抛出 Queue.Full 异常

    get 方法

    get 方法用来从队列中读取并删除一个元素。有两个参数可选,blocked 和 timeout
    - blocked = False (默认),timeout 正值

    等待时间内,没有取到任何元素,会抛出 Queue.Empty 异常。

    • blocked = True
    Queue 有一个值可用,立刻返回改值;Queue 没有任何元素,
    from multiprocessing import Process, Queue
    import os, time, random
    # 写数据进程执行的代码:
    def proc_write(q,urls):
        print('Process(%s) is writing...' % os.getpid())
        for url in urls:
            q.put(url)
            print('Put %s to queue...' % url)
            time.sleep(random.random())
    # 读数据进程执行的代码:
    def proc_read(q):
        print('Process(%s) is reading...' % os.getpid())
        while True:
            url = q.get(True)
            print('Get %s from queue.' % url)
    if __name__=='__main__':
        # 父进程创建Queue,并传给各个子进程:
        q = Queue()
        proc_writer1 = Process(target=proc_write, args=(q,['url_1', 'url_2', 'url_3']))
        proc_writer2 = Process(target=proc_write, args=(q,['url_4','url_5','url_6']))
        proc_reader = Process(target=proc_read, args=(q,))
        # 启动子进程proc_writer,写入:
        proc_writer1.start()
        proc_writer2.start()
        # 启动子进程proc_reader,读取:
        proc_reader.start()
        # 等待proc_writer结束:
        proc_writer1.join()
        proc_writer2.join()
        # proc_reader进程里是死循环,无法等待其结束,只能强行终止:
        proc_reader.terminate()

    结果:

    Process(1083) is writing...
    Put url_1 to queue...
    Process(1084) is writing...
    Put url_4 to queue...
    Process(1085) is reading...
    Get url_1 from queue.
    Get url_4 from queue.
    Put url_5 to queue...
    Get url_5 from queue.
    Put url_2 to queue...
    Get url_2 from queue.
    Put url_6 to queue...
    Get url_6 from queue.
    Put url_3 to queue...
    Get url_3 from queue.

    Pipe 进程间通信

    常用来在两个进程间通信,两个进程分别位于管道的两端。

    multiprocessing.Pipe([duplex])
    • 1

    示例一和示例二,也是网上找的别人的例子,尝试理解并增加了注释而已。网上的例子,大多是例子一和例子二在一起的,这里分开来看,比较容易理解。

    示例一:

    from multiprocessing import Process, Pipe
    
    def send(pipe):
        pipe.send(['spam'] + [42, 'egg'])   # send 传输一个列表
        pipe.close()
    
    if __name__ == '__main__':
        (con1, con2) = Pipe()                            # 创建两个 Pipe 实例
        sender = Process(target=send, args=(con1, ))     # 函数的参数,args 一定是实例化之后的 Pip 变量,不能直接写 args=(Pip(),)
        sender.start()                                   # Process 类启动进程
        print("con2 got: %s" % con2.recv())              # 管道的另一端 con2 从send收到消息
        con2.close()                                     # 关闭管道

    结果:

    con2 got: ['spam', 42, 'egg']

    示例二:

    from multiprocessing import Process, Pipe
    
    def talk(pipe):
        pipe.send(dict(name='Bob', spam=42))            # 传输一个字典
        reply = pipe.recv()                             # 接收传输的数据
        print('talker got:', reply)
    
    if __name__ == '__main__':
        (parentEnd, childEnd) = Pipe()                  # 创建两个 Pipe() 实例,也可以改成 conf1, conf2
        child = Process(target=talk, args=(childEnd,))  # 创建一个 Process 进程,名称为 child
        child.start()                                   # 启动进程
        print('parent got:', parentEnd.recv())          # parentEnd 是一个 Pip() 管道,可以接收 child Process 进程传输的数据
        parentEnd.send({x * 2 for x in 'spam'})         # parentEnd 是一个 Pip() 管道,可以使用 send 方法来传输数据
        child.join()                                    # 传输的数据被 talk 函数内的 pip 管道接收,并赋值给 reply
        print('parent exit')

    结果:

    parent got: {'name': 'Bob', 'spam': 42}
    talker got: {'ss', 'aa', 'pp', 'mm'}
    parent exit
  • 相关阅读:
    设计模式(二十)---迭代器模式
    设计模式(十九)---观察者模式
    设计模式(十八)---模板方法模式
    设计模式(十七)---策略模式
    ElasticSearch 安装
    MongoDB进击 Linux单机安装
    List集合去除重复对象。。。记录一下
    Springboot整合mybatisPlus实现分页
    git记录
    Springboot异常处理errorController
  • 原文地址:https://www.cnblogs.com/nuomin/p/7922706.html
Copyright © 2020-2023  润新知