• 全排列算法


    对于给定的集合A{a1,a2,...,an},其中的n个元素互不相同,如何输出这n个元素的所有排列(全排列)。

    递归算法

    这里以A{a,b,c}为例,来说明全排列的生成方法,对于这个集合,其包含3个元素,所有的排列情况有3!=6种,对于每一种排列,其第一个元素有3种选择a,b,c,对于第一个元素为a的排列,其第二个元素有2种选择b,c;第一个元素为b的排列,第二个元素也有2种选择a,c,……,依次类推,我们可以将集合的全排列与一棵多叉树对应。如下图所示

    在此树中,每一个从树根到叶子节点的路径,就对应了集合A的一个排列。通过递归算法,可以避免多叉树的构建过程,直接生成集合A的全排列,代码如下。

    复制代码
     1 template <typename T>
     2 inline void swap(T* array, unsigned int i, unsigned int j)
     3 {
     4     T t = array[i];
     5     array[i] = array[j];
     6     array[j] = t;
     7 }
     8 
     9 /*
    10  * 递归输出序列的全排列
    11  */
    12 void FullArray(char* array, size_t array_size, unsigned int index)
    13 {
    14     if(index >= array_size)
    15     {
    16         for(unsigned int i = 0; i < array_size; ++i)
    17         {
    18             cout << array[i] << ' ';
    19         }
    20 
    21         cout << '
    ';
    22 
    23         return;
    24     }
    25 
    26     for(unsigned int i = index; i < array_size; ++i)
    27     {
    28         swap(array, i, index);
    29 
    30         FullArray1(array, array_size, index + 1);
    31 
    32         swap(array, i, index);
    33     }
    34 }
    复制代码

    该算法使用原始的集合数组array作为参数代码的28~32行,将i位置的元素,与index位置的元素交换的目的是使得array[index + 1]到array[n]的所有元素,对应当前节点的后继结点,递归调用全排列生成函数。调用结束之后还需要回溯将交换位置的元素还原,以供其他下降路径使用。

    字典序

    全排列生成算法的一个重要思路,就是将集合A中的元素的排列,与某种顺序建立一一映射的关系,按照这种顺序,将集合的所有排列全部输出。这种顺序需要保证,既可以输出全部的排列,又不能重复输出某种排列,或者循环输出一部分排列。字典序就是用此种思想输出全排列的一种方式。这里以A{1,2,3,4}来说明用字典序输出全排列的方法。

    首先,对于集合A的某种排列所形成的序列,字典序是比较序列大小的一种方式。以A{1,2,3,4}为例,其所形成的排列1234<1243,比较的方法是从前到后依次比较两个序列的对应元素,如果当前位置对应元素相同,则继续比较下一个位置,直到第一个元素不同的位置为止,元素值大的元素在字典序中就大于元素值小的元素。上面的a1[1...4]=1234和a2[1...4]=1243,对于i=1,i=2,两序列的对应元素相等,但是当i=2时,有a1[2]=3<a2[2]=4,所以1234<1243。

    使用字典序输出全排列的思路是,首先输出字典序最小的排列,然后输出字典序次小的排列,……,最后输出字典序最大的排列。这里就涉及到一个问题,对于一个已知排列,如何求出其字典序中的下一个排列。这里给出算法。

    • 对于排列a[1...n],找到所有满足a[k]<a[k+1](0<k<n-1)的k的最大值,如果这样的k不存在,则说明当前排列已经是a的所有排列中字典序最大者,所有排列输出完毕。
    • 在a[k+1...n]中,寻找满足这样条件的元素l,使得在所有a[l]>a[k]的元素中,a[l]取得最小值。也就是说a[l]>a[k],但是小于所有其他大于a[k]的元素。
    • 交换a[l]与a[k].
    • 对于a[k+1...n],反转该区间内元素的顺序。也就是说a[k+1]与a[n]交换,a[k+2]与a[n-1]交换,……,这样就得到了a[1...n]在字典序中的下一个排列。

    这里我们以排列a[1...8]=13876542为例,来解释一下上述算法。首先我们发现,1(38)76542,括号位置是第一处满足a[k]<a[k+1]的位置,此时k=2。所以我们在a[3...8]的区间内寻找比a[2]=3大的最小元素,找到a[7]=4满足条件,交换a[2]和a[7]得到新排列14876532,对于此排列的3~8区间,反转该区间的元素,将a[3]-a[8],a[4]-a[7],a[5]-a[6]分别交换,就得到了13876542字典序的下一个元素14235678。下面是该算法的实现代码

    复制代码
    /*
     * 将数组中的元素翻转
     */
    inline void Reverse(unsigned int* array, size_t array_size)
    {
        for(unsigned i = 0; 2 * i < array_size - 1; ++i)
        {
            unsigned int t = array[i];
            array[i] = array[array_size - 1 - i];
            array[array_size - 1 - i] = t;
        }
    }
    
    inline int LexiNext(unsigned int* lexinum, size_t array_size)
    {
        unsigned int i, j, k, t;
    
        i = array_size - 2;
    
        while(i != UINT_MAX && lexinum[i] > lexinum[i + 1])
        {
            --i;
        }
    
        //达到字典序最大值
        if(i == UINT_MAX)
        {
            return 1;
        }
    
        for(j = array_size - 1, k = UINT_MAX; j > i; --j)
        {
            if(lexinum[j] > lexinum[i])
            {
                if(k == UINT_MAX)
                {
                    k = j;
                }
                else
                {
                    if(lexinum[j] < lexinum[k])
                    {
                        k = j;
                    }
                }
            }
        }
    
        t = lexinum[i];
        lexinum[i] = lexinum[k];
        lexinum[k] = t;
    
        Reverse(lexinum + i + 1, array_size - i - 1);
        return 0;
    }
    
    /*
     * 根据字典序输出排列
     */
    inline void ArrayPrint(const char* array, size_t array_size, const unsigned int* lexinum)
    {
        for(unsigned int i = 0; i < array_size; ++i)
        {
            cout << array[lexinum[i]] << ' ';
        }
    
        cout << '
    ';
    }
    
    /*
     * 基于逆序数的全排列输出
     */
    void FullArray(char* array, size_t array_size)
    {
        unsigned int lexinumber[array_size];
    
        for(unsigned int i = 0; i < array_size; ++i)
        {
            lexinumber[i] = i;
        }
    
        ArrayPrint(array, array_size, lexinumber);
    
        while(!LexiNext(lexinumber, array_size))
        {
            ArrayPrint(array, array_size, lexinumber);
        }
    }
    复制代码

    使用字典序输出集合的全排列需要注意,因为字典序涉及两个排列之间的比较,对于元素集合不方便比较的情况,可以将它们在数组中的索引作为元素,按照字典序生成索引的全排列,然后按照索引输出对应集合元素的排列,示例代码使用的就是此方法。对于集合A{a,b,c,d},可以对其索引1234进行全排列生成。这么做还有一个好处,就是对于字典序全排列生成算法,需要从字典序最小的排列开始才能够生成集合的所有排列,如果原始集合A中的元素不是有序的情况,字典序法将无法得到所有的排列结果,需要对原集合排序之后再执行生成算法,生成索引的全排列,避免了对原始集合的排序操作。

    字典序算法还有一个优点,就是不受重复元素的影响。例如1224,交换中间的两个2,实际上得到的还是同一个排列,而字典序则是严格按照排列元素的大小关系来生成的。对于包含重复元素的输入集合,需要先将相同的元素放在一起,以集合A{a,d,b,c,d,b}为例,如果直接对其索引123456进行全排列,将不会得到想要的结果,这里将重复的元素放到相邻的位置,不同元素之间不一定有序,得到排列A'{a,d,d,b,b,c},然后将不同的元素,对应不同的索引值,生成索引排列122334,再执行全排列算法,即可得到最终结果。

    好文要顶 关注我 收藏该文
    0
    0
     
    « 上一篇:扔鸡蛋问题详解
    » 下一篇:全排列生成算法(二)
    posted @ 2014-03-18 11:22 玩笑528 阅读(53) 评论(0) 编辑 收藏

     

  • 相关阅读:
    11.11 ntsysv:管理开机服务
    11.13 ethtool:查询网卡参数
    11.14 mii-tool:管理网络接口的状态
    11.15 dmidecode:查询系统硬件信息
    11.16-18 lsci、ipcs、ipcrm:清除ipc相关信息
    Devops 导论
    * SPOJ PGCD Primes in GCD Table (需要自己推线性筛函数,好题)
    SPOJ
    HDU 1695 莫比乌斯反演
    HDU 1800 hash 找出现最多次数的字符串的次数
  • 原文地址:https://www.cnblogs.com/nowornever-L/p/6008954.html
Copyright © 2020-2023  润新知