http://poj.org/problem?id=2777
题意:给出n(1e5)的长度的木棒,初始的颜色都为1,给出颜色种类t(1<=t<=30),给出q(1e5)个操作, C l r x 将l到r内的所有颜色更改为x , P l r 问在l到r内有多少种颜色。
解法:观察发现颜色种类不多,将颜色转为二进制,每一位代表一种颜色,1表示有改颜色。
用线段树存储下当前的每一段的颜色,更改用数组lazy标记,将颜色转化为二进制数,统计一段颜色时,对每一段可以对它的左右子树取 | 这样就可以统计这一段中的颜色出现的种类。
//#include<bits/stdc++.h> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> #include <string> #include <stdio.h> #include <queue> #include <stack> #include <map> #include <set> #include <string.h> #include <vector> typedef long long ll ; #define int ll #define mod 1000000007 #define gcd __gcd #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) //ll lcm(ll a , ll b){return a*b/gcd(a,b);} ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define SC scanf #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,rt<<1 #define rson mid+1,r,rt<<1|1 using namespace std; const int N = 1e6+100; const int maxn = 1e5+9; int n , t , q ; int cl[maxn<<2] , lazy[maxn<<2]; char s[5]; void pushup(int rt){ cl[rt] = cl[rt<<1] | cl[rt<<1|1]; } void pushdown(int rt){ lazy[rt<<1] = lazy[rt<<1|1] = lazy[rt]; cl[rt<<1] = cl[rt<<1|1] = lazy[rt]; lazy[rt] = 0; } void build(int l , int r , int rt){ cl[rt] = lazy[rt] = 0; if(l == r){ cl[rt] = 1 ; return ; } int mid = (l + r) >> 1 ; build(lson); build(rson); pushup(rt); } void update(int L , int R , int l , int r , int rt , int c){ if(l >= L && r <= R){ cl[rt] = lazy[rt] = 1 << (c - 1) ; return ; } if(lazy[rt]) pushdown(rt); int mid = (l + r) >> 1; if(mid >= L) update(L , R , lson , c); if(mid < R) update(L , R , rson , c); pushup(rt); } int query(int L , int R , int l , int r , int rt){ int sum = 0 ; if(l >= L && r <= R){ return cl[rt]; } if(lazy[rt]) pushdown(rt); int mid = (l + r) >> 1; if(mid >= L) sum |= query(L , R , lson); if(mid < R) sum |= query(L , R , rson); return sum; } int ans(int sum){ int cnt = 0 ; while(sum){ cnt += sum & 1 ; sum >>= 1 ; } return cnt ; } void solve(){ scanf("%lld%lld%lld" , &n , &t , &q); build(1 , n , 1); while(q--){ scanf("%s" , s); if(s[0] == 'C'){ int l , r , c ; scanf("%lld%lld%lld" , &l , &r , &c); if(l > r) swap(l , r); update(l , r , 1 , n , 1 , c); }else{ int l , r ; scanf("%lld%lld" , &l , &r); if(l > r) swap(l , r); cout << ans(query(l , r , 1 , n , 1)) << endl; } } } signed main() { //ios::sync_with_stdio(false); //cin.tie(0); cout.tie(0); solve(); }