https://codeforces.com/contest/1316/problem/C
题意:给出两个多项式相乘得到h(x),问该多项式得哪一项不能被素数p整除。
解法:假设a多项式第一个不能被p整除为ai , b多项式第一个不能被p整除为bj
ci+j = (a0 * bi+j + a1* bi+j-1.......) + ai*bj + (ai-1*bj+1 + ...... + ai+j*b0)
因为是第一个不能p整除得所以之前a0-ai-1,b0-bj-1都能被p整除即括号内的都能被
p整除,ai*bj不能被p整除,所以整个式子不能被p整除。
#include<bits/stdc++.h> typedef long long ll ; #define int ll #define mod 1000000007 #define gcd __gcd #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) //ll lcm(ll a , ll b){return a*b/gcd(a,b);} //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define cin(x) scanf("%lld" , &x); using namespace std; const int maxn = 1e6+9; int a[maxn] , b[maxn]; void solve(){ int n , m , p ; cin >> n >> m >> p; int index = -1 , indey = -1 ; rep(i , 0 , n-1){ scanf("%d" , &a[i]); if(index == -1 && a[i] % p){ index = i ; } } rep(i , 0 , m-1){ scanf("%d" , &b[i]); if(indey == -1 && b[i] % p){ indey = i ; } } cout << index + indey << endl; } signed main() { //ios::sync_with_stdio(false); //cin.tie(0); cout.tie(0); //int t ; //cin(t); //while(t--){ solve(); //} }