• [HNOI2019]白兔之舞(MTT+单位根反演)


    [HNOI2019]白兔之舞

    [注:W是一个矩阵,表示题中w[i][j],下列式子中的W做加减法时表示W_{xy}\ ans_t=Sigma_{i mod k=t}^L{L choose i}W^i\ =Sigma_{i=0}^L[k|(i-t)]{L choose i}W^i\ =Sigma_{i=0}^Lfrac1kSigma_{j=0}^{k-1}(omega_k^{i-t})^j{L choose i}W^i\ =Sigma_i^Lfrac1kSigma_{j=0}^{k-1}omega_k^{ij-tj}{L choose i}W^i\ =frac1kSigma_{j=0}^{k-1}omega_k^{{t choose 2}+{j choose 2}-{t+j choose 2}}Sigma_{i=0}^Lomega_k^{ij}{L choose i}W^i\ 设C(j)=Sigma_{i=0}^Lomega_k^{ij}{L choose i}W^i\ 把它变成二项式的形式:\ A(j)=Sigma_{i=0}^L{L choose i}(Womega_k^j)^i*1^{L-i}\ herefore A(j)=(Womega_k^j+1)^L\ herefore ans_t=frac{omega_k^{t choose 2}}kSigma_{j=0}^{k-1}omega_k^{j choose 2}A(j)omega_k^{-{t+j choose 2}}\ 这好像是还不是卷积,但是我们可以把它变成卷积\ 令f(x)=omega_k^{x choose 2}\ 令g(x)=A(x)omega_k^{-{t+x choose 2}}\ 那么按照常规操作,将f倍增,再将g翻转.\ herefore ans_t=frac{omega_k^{t choose 2}}k(f*g)(k+t)\ 然后卷积用MTT算,就没了. ]

    #pragma GCC optimize(3)
    #include<bits/stdc++.h>
    #define N (65536*4)
    using namespace std;
    const double pi=acos(-1);
    int n,k,l,x,y,p;
    struct Matrix{
        int a[3][3];
        void format(){
            memset(a,0,sizeof(a));
        }
        friend Matrix operator + (const Matrix &a,const Matrix &b){
            Matrix re;
            for(int i=0;i<3;i++)
            for(int j=0;j<3;j++){
                re.a[i][j]=(a.a[i][j]+b.a[i][j])%p;
            }
            return re;
        }
        friend Matrix operator * (const Matrix &a,const Matrix &b){
            Matrix re;
            re.format();
            for(int i=0;i<3;i++)
            for(int j=0;j<3;j++)
            for(int k=0;k<3;k++){
                re.a[i][j]=(re.a[i][j]+1ll*a.a[i][k]*b.a[k][j])%p;
            }
            return re;
        }
        friend Matrix operator * (const int &a,const Matrix &b){
            Matrix re;
            for(int i=0;i<3;i++)
            for(int j=0;j<3;j++){
                re.a[i][j]=(1ll*a*b.a[i][j])%p;
            }
            return re;
        }
        friend Matrix operator * (const Matrix &a,const int &b){return b*a;}
    }I,W;
    Matrix Pow(Matrix x,int y){
        Matrix re=I;
        while(y){
            if(y&1)re=re*x;
            y>>=1;
            x=x*x;
        }
        return re;
    }
    struct Complex{double x,y;};
    Complex operator + (Complex a,Complex b){return (Complex){a.x+b.x,a.y+b.y};}
    Complex operator - (Complex a,Complex b){return (Complex){a.x-b.x,a.y-b.y};}
    Complex operator * (Complex a,Complex b){return (Complex){a.x*b.x-a.y*b.y,a.y*b.x+a.x*b.y};}
    Complex a[N],b[N],c[N];
    
    int Pow(int x,int y){
        int re=1;
        while(y){
            if(y&1)re=(1ll*re*x)%p;
            y>>=1;
            x=(1ll*x*x)%p;
        }
        return re;
    }
    
    int rev[N];
    int pre(int n,int m){
        int high=0,cnt=1;;
        while(cnt<n+m)cnt<<=1,high++;
        for(int i=0;i<cnt;i++)
            rev[i]=(rev[i>>1]>>1)|((i&1)<<(high-1));
        return cnt;
    }
    int root(int num){
        int div[128],sum=0;
        int phi=num-1;
        for(int i=2;i<=phi;i++){
            if(phi%i==0){
                div[++sum]=i;
                while(phi%i==0)phi/=i;
            }
        }
        if(phi!=1)div[++sum]=phi;
        int re=2;
        while(1){
            int flag=1;
            for(int i=1;i<=sum;i++){
                int pw=Pow(re,(num-1)/div[i]);
                if(pw==1){flag=0;break;}
            }
            if(flag)return re;
            re++;
        }
    }
    Complex w[N];
    void fft(int lim,Complex *buf,int dft=1){
        for(int i=0;i<lim;i++)if(i<rev[i])swap(buf[i],buf[rev[i]]);
        for(int len=2;len<=lim;len<<=1){
            for(int s=0;s<lim;s+=len){
                for(int k=s;k<s+len/2;k++){
                    Complex x,y;
                    x=buf[k],y=w[lim/len*(k-s)]*buf[k+len/2];
                    buf[k]=x+y;
                    buf[k+len/2]=x-y;
                }
            }
        }
        if(dft==-1)for(int i=0;i<lim;i++)buf[i].x/=lim;
    }
    Complex A1[N],B1[N],A2[N],B2[N];
    void Mul(int lim,int *A,int *B){
        for(int i=0;i<lim;i++)A1[i].x=A[i]>>15,B1[i].x=A[i]&32767;
        for(int i=0;i<lim;i++)A2[i].x=B[i]>>15,B2[i].x=B[i]&32767;
        for(int i=0;i<N;++i)w[i]=(Complex){cos(i*pi*2/lim),sin(i*pi*2/lim)};
        fft(lim,A1);
        fft(lim,B1);
        fft(lim,A2);
        fft(lim,B2);
        for(int i=0;i<lim;i++){
            Complex A1_=A1[i],A2_=A2[i];
            Complex B1_=B1[i],B2_=B2[i];
            A1[i]=A1_*A2_;
            A2[i]=B1_*B2_;
            B1[i]=A1_*B2_;
            B2[i]=A2_*B1_;
        }
        for(int i=0;i<lim;++i)w[i]=(Complex){cos(i*pi*2/lim),-sin(i*pi*2/lim)};
        fft(lim,A1,-1);
        fft(lim,B1,-1);
        fft(lim,A2,-1);
        fft(lim,B2,-1);
        int m=32768;
        for(int i=0;i<lim;i++){
            double A1_=A1[i].x,A2_=A2[i].x;
            double B1_=B1[i].x,B2_=B2[i].x;
            A[i]=((long long)(A1_+0.5)*m%p*m%p+(long long)(B1_+B2_+0.5)*m%p+(long long)(A2_+0.5))%p;
        }
    }
    int gen[N],f[N],g[N];
    int omg(long long x){
        x=((x%k)+k)%k;
        return gen[x];
    }
    signed main(){
    #ifdef KOG_juruo
        freopen("data.in","r",stdin);
        freopen("my.out","w",stdout);
    #endif
        scanf("%d%d%d%d%d%d",&n,&k,&l,&x,&y,&p);
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                scanf("%d",&W.a[i][j]);
            }
        }
        for(int i=0;i<3;i++)I.a[i][i]=1;
        gen[0]=1,gen[1]=root(p);
        gen[1]=Pow(gen[1],(p-1)/k);
        for(int i=2;i<k;i++)gen[i]=(1ll*gen[i-1]*gen[1])%p;
        for(int i=0;i<=2*k;i++)f[i]=omg(1ll*-i*(i-1)/2);
        for(int i=0;i<k;i++)g[i]=1ll*omg(1ll*i*(i-1)/2)*(Pow(W*omg(i)+I,l).a[x-1][y-1])%p;
        reverse(g,g+k+1);
        int lim=pre(2*k,k);
        Mul(lim,f,g);
        int inv=Pow(k,p-2);
        for(int t=0;t<k;t++){
            printf("%lld
    ",1ll*omg(1ll*t*(t-1)/2)*inv%p*f[t+k]%p);
        }
        return 0;
    }
    /*
    3 4 100 3 3 998244353
    1 1 1
    1 1 1
    1 1 1
    
    */
    
  • 相关阅读:
    词法分析程序
    大数据概述作业
    编译原理心得
    简化C语言文法
    解决:eclipse引入一个新项目所有jsp报错
    解决: 启动tomcat java.net.BindException: Address already in use: JVM_Bind错误
    myeclipse优化
    jquery冲突
    QQ上传大文件为什么这么快
    java中的重写和重载
  • 原文地址:https://www.cnblogs.com/nlKOG/p/10754952.html
Copyright © 2020-2023  润新知