• 第四章:(1)Redis 数据类型 之 Redis 解析配置文件 redis.conf


    一、Redis 的完整配置文件

    # Redis configuration file example
    
    # Note on units: when memory size is needed, it is possible to specify
    # it in the usual form of 1k 5GB 4M and so forth:
    #
    # 1k => 1000 bytes
    # 1kb => 1024 bytes
    # 1m => 1000000 bytes
    # 1mb => 1024*1024 bytes
    # 1g => 1000000000 bytes
    # 1gb => 1024*1024*1024 bytes
    #
    # units are case insensitive so 1GB 1Gb 1gB are all the same.
    
    ################################## INCLUDES ###################################
    
    # Include one or more other config files here.  This is useful if you
    # have a standard template that goes to all Redis servers but also need
    # to customize a few per-server settings.  Include files can include
    # other files, so use this wisely.
    #
    # Notice option "include" won't be rewritten by command "CONFIG REWRITE"
    # from admin or Redis Sentinel. Since Redis always uses the last processed
    # line as value of a configuration directive, you'd better put includes
    # at the beginning of this file to avoid overwriting config change at runtime.
    #
    # If instead you are interested in using includes to override configuration
    # options, it is better to use include as the last line.
    #
    # include /path/to/local.conf
    # include /path/to/other.conf
    
    ################################ GENERAL  #####################################
    
    # By default Redis does not run as a daemon. Use 'yes' if you need it.
    # Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
    daemonize no
    
    # When running daemonized, Redis writes a pid file in /var/run/redis.pid by
    # default. You can specify a custom pid file location here.
    pidfile /var/run/redis.pid
    
    # Accept connections on the specified port, default is 6379.
    # If port 0 is specified Redis will not listen on a TCP socket.
    port 6379
    
    # TCP listen() backlog.
    #
    # In high requests-per-second environments you need an high backlog in order
    # to avoid slow clients connections issues. Note that the Linux kernel
    # will silently truncate it to the value of /proc/sys/net/core/somaxconn so
    # make sure to raise both the value of somaxconn and tcp_max_syn_backlog
    # in order to get the desired effect.
    tcp-backlog 511
    
    # By default Redis listens for connections from all the network interfaces
    # available on the server. It is possible to listen to just one or multiple
    # interfaces using the "bind" configuration directive, followed by one or
    # more IP addresses.
    #
    # Examples:
    #
    # bind 192.168.1.100 10.0.0.1
    # bind 127.0.0.1
    
    # Specify the path for the Unix socket that will be used to listen for
    # incoming connections. There is no default, so Redis will not listen
    # on a unix socket when not specified.
    #
    # unixsocket /tmp/redis.sock
    # unixsocketperm 700
    
    # Close the connection after a client is idle for N seconds (0 to disable)
    timeout 0
    
    # TCP keepalive.
    #
    # If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
    # of communication. This is useful for two reasons:
    #
    # 1) Detect dead peers.
    # 2) Take the connection alive from the point of view of network
    #    equipment in the middle.
    #
    # On Linux, the specified value (in seconds) is the period used to send ACKs.
    # Note that to close the connection the double of the time is needed.
    # On other kernels the period depends on the kernel configuration.
    #
    # A reasonable value for this option is 60 seconds.
    tcp-keepalive 0
    
    # Specify the server verbosity level.
    # This can be one of:
    # debug (a lot of information, useful for development/testing)
    # verbose (many rarely useful info, but not a mess like the debug level)
    # notice (moderately verbose, what you want in production probably)
    # warning (only very important / critical messages are logged)
    loglevel notice
    
    # Specify the log file name. Also the empty string can be used to force
    # Redis to log on the standard output. Note that if you use standard
    # output for logging but daemonize, logs will be sent to /dev/null
    logfile ""
    
    # To enable logging to the system logger, just set 'syslog-enabled' to yes,
    # and optionally update the other syslog parameters to suit your needs.
    # syslog-enabled no
    
    # Specify the syslog identity.
    # syslog-ident redis
    
    # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
    # syslog-facility local0
    
    # Set the number of databases. The default database is DB 0, you can select
    # a different one on a per-connection basis using SELECT <dbid> where
    # dbid is a number between 0 and 'databases'-1
    databases 16
    
    ################################ SNAPSHOTTING  ################################
    #
    # Save the DB on disk:
    #
    #   save <seconds> <changes>
    #
    #   Will save the DB if both the given number of seconds and the given
    #   number of write operations against the DB occurred.
    #
    #   In the example below the behaviour will be to save:
    #   after 900 sec (15 min) if at least 1 key changed
    #   after 300 sec (5 min) if at least 10 keys changed
    #   after 60 sec if at least 10000 keys changed
    #
    #   Note: you can disable saving completely by commenting out all "save" lines.
    #
    #   It is also possible to remove all the previously configured save
    #   points by adding a save directive with a single empty string argument
    #   like in the following example:
    #
    #   save ""
    
    save 900 1
    save 300 10
    save 60 10000
    
    # By default Redis will stop accepting writes if RDB snapshots are enabled
    # (at least one save point) and the latest background save failed.
    # This will make the user aware (in a hard way) that data is not persisting
    # on disk properly, otherwise chances are that no one will notice and some
    # disaster will happen.
    #
    # If the background saving process will start working again Redis will
    # automatically allow writes again.
    #
    # However if you have setup your proper monitoring of the Redis server
    # and persistence, you may want to disable this feature so that Redis will
    # continue to work as usual even if there are problems with disk,
    # permissions, and so forth.
    stop-writes-on-bgsave-error yes
    
    # Compress string objects using LZF when dump .rdb databases?
    # For default that's set to 'yes' as it's almost always a win.
    # If you want to save some CPU in the saving child set it to 'no' but
    # the dataset will likely be bigger if you have compressible values or keys.
    rdbcompression yes
    
    # Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
    # This makes the format more resistant to corruption but there is a performance
    # hit to pay (around 10%) when saving and loading RDB files, so you can disable it
    # for maximum performances.
    #
    # RDB files created with checksum disabled have a checksum of zero that will
    # tell the loading code to skip the check.
    rdbchecksum yes
    
    # The filename where to dump the DB
    dbfilename dump.rdb
    
    # The working directory.
    #
    # The DB will be written inside this directory, with the filename specified
    # above using the 'dbfilename' configuration directive.
    #
    # The Append Only File will also be created inside this directory.
    #
    # Note that you must specify a directory here, not a file name.
    dir ./
    
    ################################# REPLICATION #################################
    
    # Master-Slave replication. Use slaveof to make a Redis instance a copy of
    # another Redis server. A few things to understand ASAP about Redis replication.
    #
    # 1) Redis replication is asynchronous, but you can configure a master to
    #    stop accepting writes if it appears to be not connected with at least
    #    a given number of slaves.
    # 2) Redis slaves are able to perform a partial resynchronization with the
    #    master if the replication link is lost for a relatively small amount of
    #    time. You may want to configure the replication backlog size (see the next
    #    sections of this file) with a sensible value depending on your needs.
    # 3) Replication is automatic and does not need user intervention. After a
    #    network partition slaves automatically try to reconnect to masters
    #    and resynchronize with them.
    #
    # slaveof <masterip> <masterport>
    
    # If the master is password protected (using the "requirepass" configuration
    # directive below) it is possible to tell the slave to authenticate before
    # starting the replication synchronization process, otherwise the master will
    # refuse the slave request.
    #
    # masterauth <master-password>
    
    # When a slave loses its connection with the master, or when the replication
    # is still in progress, the slave can act in two different ways:
    #
    # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
    #    still reply to client requests, possibly with out of date data, or the
    #    data set may just be empty if this is the first synchronization.
    #
    # 2) if slave-serve-stale-data is set to 'no' the slave will reply with
    #    an error "SYNC with master in progress" to all the kind of commands
    #    but to INFO and SLAVEOF.
    #
    slave-serve-stale-data yes
    
    # You can configure a slave instance to accept writes or not. Writing against
    # a slave instance may be useful to store some ephemeral data (because data
    # written on a slave will be easily deleted after resync with the master) but
    # may also cause problems if clients are writing to it because of a
    # misconfiguration.
    #
    # Since Redis 2.6 by default slaves are read-only.
    #
    # Note: read only slaves are not designed to be exposed to untrusted clients
    # on the internet. It's just a protection layer against misuse of the instance.
    # Still a read only slave exports by default all the administrative commands
    # such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
    # security of read only slaves using 'rename-command' to shadow all the
    # administrative / dangerous commands.
    slave-read-only yes
    
    # Replication SYNC strategy: disk or socket.
    #
    # -------------------------------------------------------
    # WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY
    # -------------------------------------------------------
    #
    # New slaves and reconnecting slaves that are not able to continue the replication
    # process just receiving differences, need to do what is called a "full
    # synchronization". An RDB file is transmitted from the master to the slaves.
    # The transmission can happen in two different ways:
    #
    # 1) Disk-backed: The Redis master creates a new process that writes the RDB
    #                 file on disk. Later the file is transferred by the parent
    #                 process to the slaves incrementally.
    # 2) Diskless: The Redis master creates a new process that directly writes the
    #              RDB file to slave sockets, without touching the disk at all.
    #
    # With disk-backed replication, while the RDB file is generated, more slaves
    # can be queued and served with the RDB file as soon as the current child producing
    # the RDB file finishes its work. With diskless replication instead once
    # the transfer starts, new slaves arriving will be queued and a new transfer
    # will start when the current one terminates.
    #
    # When diskless replication is used, the master waits a configurable amount of
    # time (in seconds) before starting the transfer in the hope that multiple slaves
    # will arrive and the transfer can be parallelized.
    #
    # With slow disks and fast (large bandwidth) networks, diskless replication
    # works better.
    repl-diskless-sync no
    
    # When diskless replication is enabled, it is possible to configure the delay
    # the server waits in order to spawn the child that transfers the RDB via socket
    # to the slaves.
    #
    # This is important since once the transfer starts, it is not possible to serve
    # new slaves arriving, that will be queued for the next RDB transfer, so the server
    # waits a delay in order to let more slaves arrive.
    #
    # The delay is specified in seconds, and by default is 5 seconds. To disable
    # it entirely just set it to 0 seconds and the transfer will start ASAP.
    repl-diskless-sync-delay 5
    
    # Slaves send PINGs to server in a predefined interval. It's possible to change
    # this interval with the repl_ping_slave_period option. The default value is 10
    # seconds.
    #
    # repl-ping-slave-period 10
    
    # The following option sets the replication timeout for:
    #
    # 1) Bulk transfer I/O during SYNC, from the point of view of slave.
    # 2) Master timeout from the point of view of slaves (data, pings).
    # 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).
    #
    # It is important to make sure that this value is greater than the value
    # specified for repl-ping-slave-period otherwise a timeout will be detected
    # every time there is low traffic between the master and the slave.
    #
    # repl-timeout 60
    
    # Disable TCP_NODELAY on the slave socket after SYNC?
    #
    # If you select "yes" Redis will use a smaller number of TCP packets and
    # less bandwidth to send data to slaves. But this can add a delay for
    # the data to appear on the slave side, up to 40 milliseconds with
    # Linux kernels using a default configuration.
    #
    # If you select "no" the delay for data to appear on the slave side will
    # be reduced but more bandwidth will be used for replication.
    #
    # By default we optimize for low latency, but in very high traffic conditions
    # or when the master and slaves are many hops away, turning this to "yes" may
    # be a good idea.
    repl-disable-tcp-nodelay no
    
    # Set the replication backlog size. The backlog is a buffer that accumulates
    # slave data when slaves are disconnected for some time, so that when a slave
    # wants to reconnect again, often a full resync is not needed, but a partial
    # resync is enough, just passing the portion of data the slave missed while
    # disconnected.
    #
    # The bigger the replication backlog, the longer the time the slave can be
    # disconnected and later be able to perform a partial resynchronization.
    #
    # The backlog is only allocated once there is at least a slave connected.
    #
    # repl-backlog-size 1mb
    
    # After a master has no longer connected slaves for some time, the backlog
    # will be freed. The following option configures the amount of seconds that
    # need to elapse, starting from the time the last slave disconnected, for
    # the backlog buffer to be freed.
    #
    # A value of 0 means to never release the backlog.
    #
    # repl-backlog-ttl 3600
    
    # The slave priority is an integer number published by Redis in the INFO output.
    # It is used by Redis Sentinel in order to select a slave to promote into a
    # master if the master is no longer working correctly.
    #
    # A slave with a low priority number is considered better for promotion, so
    # for instance if there are three slaves with priority 10, 100, 25 Sentinel will
    # pick the one with priority 10, that is the lowest.
    #
    # However a special priority of 0 marks the slave as not able to perform the
    # role of master, so a slave with priority of 0 will never be selected by
    # Redis Sentinel for promotion.
    #
    # By default the priority is 100.
    slave-priority 100
    
    # It is possible for a master to stop accepting writes if there are less than
    # N slaves connected, having a lag less or equal than M seconds.
    #
    # The N slaves need to be in "online" state.
    #
    # The lag in seconds, that must be <= the specified value, is calculated from
    # the last ping received from the slave, that is usually sent every second.
    #
    # This option does not GUARANTEE that N replicas will accept the write, but
    # will limit the window of exposure for lost writes in case not enough slaves
    # are available, to the specified number of seconds.
    #
    # For example to require at least 3 slaves with a lag <= 10 seconds use:
    #
    # min-slaves-to-write 3
    # min-slaves-max-lag 10
    #
    # Setting one or the other to 0 disables the feature.
    #
    # By default min-slaves-to-write is set to 0 (feature disabled) and
    # min-slaves-max-lag is set to 10.
    
    ################################## SECURITY ###################################
    
    # Require clients to issue AUTH <PASSWORD> before processing any other
    # commands.  This might be useful in environments in which you do not trust
    # others with access to the host running redis-server.
    #
    # This should stay commented out for backward compatibility and because most
    # people do not need auth (e.g. they run their own servers).
    #
    # Warning: since Redis is pretty fast an outside user can try up to
    # 150k passwords per second against a good box. This means that you should
    # use a very strong password otherwise it will be very easy to break.
    #
    # requirepass foobared
    
    # Command renaming.
    #
    # It is possible to change the name of dangerous commands in a shared
    # environment. For instance the CONFIG command may be renamed into something
    # hard to guess so that it will still be available for internal-use tools
    # but not available for general clients.
    #
    # Example:
    #
    # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
    #
    # It is also possible to completely kill a command by renaming it into
    # an empty string:
    #
    # rename-command CONFIG ""
    #
    # Please note that changing the name of commands that are logged into the
    # AOF file or transmitted to slaves may cause problems.
    
    ################################### LIMITS ####################################
    
    # Set the max number of connected clients at the same time. By default
    # this limit is set to 10000 clients, however if the Redis server is not
    # able to configure the process file limit to allow for the specified limit
    # the max number of allowed clients is set to the current file limit
    # minus 32 (as Redis reserves a few file descriptors for internal uses).
    #
    # Once the limit is reached Redis will close all the new connections sending
    # an error 'max number of clients reached'.
    #
    # maxclients 10000
    
    # Don't use more memory than the specified amount of bytes.
    # When the memory limit is reached Redis will try to remove keys
    # according to the eviction policy selected (see maxmemory-policy).
    #
    # If Redis can't remove keys according to the policy, or if the policy is
    # set to 'noeviction', Redis will start to reply with errors to commands
    # that would use more memory, like SET, LPUSH, and so on, and will continue
    # to reply to read-only commands like GET.
    #
    # This option is usually useful when using Redis as an LRU cache, or to set
    # a hard memory limit for an instance (using the 'noeviction' policy).
    #
    # WARNING: If you have slaves attached to an instance with maxmemory on,
    # the size of the output buffers needed to feed the slaves are subtracted
    # from the used memory count, so that network problems / resyncs will
    # not trigger a loop where keys are evicted, and in turn the output
    # buffer of slaves is full with DELs of keys evicted triggering the deletion
    # of more keys, and so forth until the database is completely emptied.
    #
    # In short... if you have slaves attached it is suggested that you set a lower
    # limit for maxmemory so that there is some free RAM on the system for slave
    # output buffers (but this is not needed if the policy is 'noeviction').
    #
    # maxmemory <bytes>
    
    # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
    # is reached. You can select among five behaviors:
    #
    # volatile-lru -> remove the key with an expire set using an LRU algorithm
    # allkeys-lru -> remove any key according to the LRU algorithm
    # volatile-random -> remove a random key with an expire set
    # allkeys-random -> remove a random key, any key
    # volatile-ttl -> remove the key with the nearest expire time (minor TTL)
    # noeviction -> don't expire at all, just return an error on write operations
    #
    # Note: with any of the above policies, Redis will return an error on write
    #       operations, when there are no suitable keys for eviction.
    #
    #       At the date of writing these commands are: set setnx setex append
    #       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
    #       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
    #       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
    #       getset mset msetnx exec sort
    #
    # The default is:
    #
    # maxmemory-policy noeviction
    
    # LRU and minimal TTL algorithms are not precise algorithms but approximated
    # algorithms (in order to save memory), so you can tune it for speed or
    # accuracy. For default Redis will check five keys and pick the one that was
    # used less recently, you can change the sample size using the following
    # configuration directive.
    #
    # The default of 5 produces good enough results. 10 Approximates very closely
    # true LRU but costs a bit more CPU. 3 is very fast but not very accurate.
    #
    # maxmemory-samples 5
    
    ############################## APPEND ONLY MODE ###############################
    
    # By default Redis asynchronously dumps the dataset on disk. This mode is
    # good enough in many applications, but an issue with the Redis process or
    # a power outage may result into a few minutes of writes lost (depending on
    # the configured save points).
    #
    # The Append Only File is an alternative persistence mode that provides
    # much better durability. For instance using the default data fsync policy
    # (see later in the config file) Redis can lose just one second of writes in a
    # dramatic event like a server power outage, or a single write if something
    # wrong with the Redis process itself happens, but the operating system is
    # still running correctly.
    #
    # AOF and RDB persistence can be enabled at the same time without problems.
    # If the AOF is enabled on startup Redis will load the AOF, that is the file
    # with the better durability guarantees.
    #
    # Please check http://redis.io/topics/persistence for more information.
    
    appendonly no
    
    # The name of the append only file (default: "appendonly.aof")
    
    appendfilename "appendonly.aof"
    
    # The fsync() call tells the Operating System to actually write data on disk
    # instead of waiting for more data in the output buffer. Some OS will really flush
    # data on disk, some other OS will just try to do it ASAP.
    #
    # Redis supports three different modes:
    #
    # no: don't fsync, just let the OS flush the data when it wants. Faster.
    # always: fsync after every write to the append only log. Slow, Safest.
    # everysec: fsync only one time every second. Compromise.
    #
    # The default is "everysec", as that's usually the right compromise between
    # speed and data safety. It's up to you to understand if you can relax this to
    # "no" that will let the operating system flush the output buffer when
    # it wants, for better performances (but if you can live with the idea of
    # some data loss consider the default persistence mode that's snapshotting),
    # or on the contrary, use "always" that's very slow but a bit safer than
    # everysec.
    #
    # More details please check the following article:
    # http://antirez.com/post/redis-persistence-demystified.html
    #
    # If unsure, use "everysec".
    
    # appendfsync always
    appendfsync everysec
    # appendfsync no
    
    # When the AOF fsync policy is set to always or everysec, and a background
    # saving process (a background save or AOF log background rewriting) is
    # performing a lot of I/O against the disk, in some Linux configurations
    # Redis may block too long on the fsync() call. Note that there is no fix for
    # this currently, as even performing fsync in a different thread will block
    # our synchronous write(2) call.
    #
    # In order to mitigate this problem it's possible to use the following option
    # that will prevent fsync() from being called in the main process while a
    # BGSAVE or BGREWRITEAOF is in progress.
    #
    # This means that while another child is saving, the durability of Redis is
    # the same as "appendfsync none". In practical terms, this means that it is
    # possible to lose up to 30 seconds of log in the worst scenario (with the
    # default Linux settings).
    #
    # If you have latency problems turn this to "yes". Otherwise leave it as
    # "no" that is the safest pick from the point of view of durability.
    
    no-appendfsync-on-rewrite no
    
    # Automatic rewrite of the append only file.
    # Redis is able to automatically rewrite the log file implicitly calling
    # BGREWRITEAOF when the AOF log size grows by the specified percentage.
    #
    # This is how it works: Redis remembers the size of the AOF file after the
    # latest rewrite (if no rewrite has happened since the restart, the size of
    # the AOF at startup is used).
    #
    # This base size is compared to the current size. If the current size is
    # bigger than the specified percentage, the rewrite is triggered. Also
    # you need to specify a minimal size for the AOF file to be rewritten, this
    # is useful to avoid rewriting the AOF file even if the percentage increase
    # is reached but it is still pretty small.
    #
    # Specify a percentage of zero in order to disable the automatic AOF
    # rewrite feature.
    
    auto-aof-rewrite-percentage 100
    auto-aof-rewrite-min-size 64mb
    
    # An AOF file may be found to be truncated at the end during the Redis
    # startup process, when the AOF data gets loaded back into memory.
    # This may happen when the system where Redis is running
    # crashes, especially when an ext4 filesystem is mounted without the
    # data=ordered option (however this can't happen when Redis itself
    # crashes or aborts but the operating system still works correctly).
    #
    # Redis can either exit with an error when this happens, or load as much
    # data as possible (the default now) and start if the AOF file is found
    # to be truncated at the end. The following option controls this behavior.
    #
    # If aof-load-truncated is set to yes, a truncated AOF file is loaded and
    # the Redis server starts emitting a log to inform the user of the event.
    # Otherwise if the option is set to no, the server aborts with an error
    # and refuses to start. When the option is set to no, the user requires
    # to fix the AOF file using the "redis-check-aof" utility before to restart
    # the server.
    #
    # Note that if the AOF file will be found to be corrupted in the middle
    # the server will still exit with an error. This option only applies when
    # Redis will try to read more data from the AOF file but not enough bytes
    # will be found.
    aof-load-truncated yes
    
    ################################ LUA SCRIPTING  ###############################
    
    # Max execution time of a Lua script in milliseconds.
    #
    # If the maximum execution time is reached Redis will log that a script is
    # still in execution after the maximum allowed time and will start to
    # reply to queries with an error.
    #
    # When a long running script exceeds the maximum execution time only the
    # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
    # used to stop a script that did not yet called write commands. The second
    # is the only way to shut down the server in the case a write command was
    # already issued by the script but the user doesn't want to wait for the natural
    # termination of the script.
    #
    # Set it to 0 or a negative value for unlimited execution without warnings.
    lua-time-limit 5000
    
    ################################ REDIS CLUSTER  ###############################
    #
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however
    # in order to mark it as "mature" we need to wait for a non trivial percentage
    # of users to deploy it in production.
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    #
    # Normal Redis instances can't be part of a Redis Cluster; only nodes that are
    # started as cluster nodes can. In order to start a Redis instance as a
    # cluster node enable the cluster support uncommenting the following:
    #
    # cluster-enabled yes
    
    # Every cluster node has a cluster configuration file. This file is not
    # intended to be edited by hand. It is created and updated by Redis nodes.
    # Every Redis Cluster node requires a different cluster configuration file.
    # Make sure that instances running in the same system do not have
    # overlapping cluster configuration file names.
    #
    # cluster-config-file nodes-6379.conf
    
    # Cluster node timeout is the amount of milliseconds a node must be unreachable
    # for it to be considered in failure state.
    # Most other internal time limits are multiple of the node timeout.
    #
    # cluster-node-timeout 15000
    
    # A slave of a failing master will avoid to start a failover if its data
    # looks too old.
    #
    # There is no simple way for a slave to actually have a exact measure of
    # its "data age", so the following two checks are performed:
    #
    # 1) If there are multiple slaves able to failover, they exchange messages
    #    in order to try to give an advantage to the slave with the best
    #    replication offset (more data from the master processed).
    #    Slaves will try to get their rank by offset, and apply to the start
    #    of the failover a delay proportional to their rank.
    #
    # 2) Every single slave computes the time of the last interaction with
    #    its master. This can be the last ping or command received (if the master
    #    is still in the "connected" state), or the time that elapsed since the
    #    disconnection with the master (if the replication link is currently down).
    #    If the last interaction is too old, the slave will not try to failover
    #    at all.
    #
    # The point "2" can be tuned by user. Specifically a slave will not perform
    # the failover if, since the last interaction with the master, the time
    # elapsed is greater than:
    #
    #   (node-timeout * slave-validity-factor) + repl-ping-slave-period
    #
    # So for example if node-timeout is 30 seconds, and the slave-validity-factor
    # is 10, and assuming a default repl-ping-slave-period of 10 seconds, the
    # slave will not try to failover if it was not able to talk with the master
    # for longer than 310 seconds.
    #
    # A large slave-validity-factor may allow slaves with too old data to failover
    # a master, while a too small value may prevent the cluster from being able to
    # elect a slave at all.
    #
    # For maximum availability, it is possible to set the slave-validity-factor
    # to a value of 0, which means, that slaves will always try to failover the
    # master regardless of the last time they interacted with the master.
    # (However they'll always try to apply a delay proportional to their
    # offset rank).
    #
    # Zero is the only value able to guarantee that when all the partitions heal
    # the cluster will always be able to continue.
    #
    # cluster-slave-validity-factor 10
    
    # Cluster slaves are able to migrate to orphaned masters, that are masters
    # that are left without working slaves. This improves the cluster ability
    # to resist to failures as otherwise an orphaned master can't be failed over
    # in case of failure if it has no working slaves.
    #
    # Slaves migrate to orphaned masters only if there are still at least a
    # given number of other working slaves for their old master. This number
    # is the "migration barrier". A migration barrier of 1 means that a slave
    # will migrate only if there is at least 1 other working slave for its master
    # and so forth. It usually reflects the number of slaves you want for every
    # master in your cluster.
    #
    # Default is 1 (slaves migrate only if their masters remain with at least
    # one slave). To disable migration just set it to a very large value.
    # A value of 0 can be set but is useful only for debugging and dangerous
    # in production.
    #
    # cluster-migration-barrier 1
    
    # By default Redis Cluster nodes stop accepting queries if they detect there
    # is at least an hash slot uncovered (no available node is serving it).
    # This way if the cluster is partially down (for example a range of hash slots
    # are no longer covered) all the cluster becomes, eventually, unavailable.
    # It automatically returns available as soon as all the slots are covered again.
    #
    # However sometimes you want the subset of the cluster which is working,
    # to continue to accept queries for the part of the key space that is still
    # covered. In order to do so, just set the cluster-require-full-coverage
    # option to no.
    #
    # cluster-require-full-coverage yes
    
    # In order to setup your cluster make sure to read the documentation
    # available at http://redis.io web site.
    
    ################################## SLOW LOG ###################################
    
    # The Redis Slow Log is a system to log queries that exceeded a specified
    # execution time. The execution time does not include the I/O operations
    # like talking with the client, sending the reply and so forth,
    # but just the time needed to actually execute the command (this is the only
    # stage of command execution where the thread is blocked and can not serve
    # other requests in the meantime).
    #
    # You can configure the slow log with two parameters: one tells Redis
    # what is the execution time, in microseconds, to exceed in order for the
    # command to get logged, and the other parameter is the length of the
    # slow log. When a new command is logged the oldest one is removed from the
    # queue of logged commands.
    
    # The following time is expressed in microseconds, so 1000000 is equivalent
    # to one second. Note that a negative number disables the slow log, while
    # a value of zero forces the logging of every command.
    slowlog-log-slower-than 10000
    
    # There is no limit to this length. Just be aware that it will consume memory.
    # You can reclaim memory used by the slow log with SLOWLOG RESET.
    slowlog-max-len 128
    
    ################################ LATENCY MONITOR ##############################
    
    # The Redis latency monitoring subsystem samples different operations
    # at runtime in order to collect data related to possible sources of
    # latency of a Redis instance.
    #
    # Via the LATENCY command this information is available to the user that can
    # print graphs and obtain reports.
    #
    # The system only logs operations that were performed in a time equal or
    # greater than the amount of milliseconds specified via the
    # latency-monitor-threshold configuration directive. When its value is set
    # to zero, the latency monitor is turned off.
    #
    # By default latency monitoring is disabled since it is mostly not needed
    # if you don't have latency issues, and collecting data has a performance
    # impact, that while very small, can be measured under big load. Latency
    # monitoring can easily be enabled at runtime using the command
    # "CONFIG SET latency-monitor-threshold <milliseconds>" if needed.
    latency-monitor-threshold 0
    
    ############################# EVENT NOTIFICATION ##############################
    
    # Redis can notify Pub/Sub clients about events happening in the key space.
    # This feature is documented at http://redis.io/topics/notifications
    #
    # For instance if keyspace events notification is enabled, and a client
    # performs a DEL operation on key "foo" stored in the Database 0, two
    # messages will be published via Pub/Sub:
    #
    # PUBLISH __keyspace@0__:foo del
    # PUBLISH __keyevent@0__:del foo
    #
    # It is possible to select the events that Redis will notify among a set
    # of classes. Every class is identified by a single character:
    #
    #  K     Keyspace events, published with __keyspace@<db>__ prefix.
    #  E     Keyevent events, published with __keyevent@<db>__ prefix.
    #  g     Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
    #  $     String commands
    #  l     List commands
    #  s     Set commands
    #  h     Hash commands
    #  z     Sorted set commands
    #  x     Expired events (events generated every time a key expires)
    #  e     Evicted events (events generated when a key is evicted for maxmemory)
    #  A     Alias for g$lshzxe, so that the "AKE" string means all the events.
    #
    #  The "notify-keyspace-events" takes as argument a string that is composed
    #  of zero or multiple characters. The empty string means that notifications
    #  are disabled.
    #
    #  Example: to enable list and generic events, from the point of view of the
    #           event name, use:
    #
    #  notify-keyspace-events Elg
    #
    #  Example 2: to get the stream of the expired keys subscribing to channel
    #             name __keyevent@0__:expired use:
    #
    #  notify-keyspace-events Ex
    #
    #  By default all notifications are disabled because most users don't need
    #  this feature and the feature has some overhead. Note that if you don't
    #  specify at least one of K or E, no events will be delivered.
    notify-keyspace-events ""
    
    ############################### ADVANCED CONFIG ###############################
    
    # Hashes are encoded using a memory efficient data structure when they have a
    # small number of entries, and the biggest entry does not exceed a given
    # threshold. These thresholds can be configured using the following directives.
    hash-max-ziplist-entries 512
    hash-max-ziplist-value 64
    
    # Similarly to hashes, small lists are also encoded in a special way in order
    # to save a lot of space. The special representation is only used when
    # you are under the following limits:
    list-max-ziplist-entries 512
    list-max-ziplist-value 64
    
    # Sets have a special encoding in just one case: when a set is composed
    # of just strings that happen to be integers in radix 10 in the range
    # of 64 bit signed integers.
    # The following configuration setting sets the limit in the size of the
    # set in order to use this special memory saving encoding.
    set-max-intset-entries 512
    
    # Similarly to hashes and lists, sorted sets are also specially encoded in
    # order to save a lot of space. This encoding is only used when the length and
    # elements of a sorted set are below the following limits:
    zset-max-ziplist-entries 128
    zset-max-ziplist-value 64
    
    # HyperLogLog sparse representation bytes limit. The limit includes the
    # 16 bytes header. When an HyperLogLog using the sparse representation crosses
    # this limit, it is converted into the dense representation.
    #
    # A value greater than 16000 is totally useless, since at that point the
    # dense representation is more memory efficient.
    #
    # The suggested value is ~ 3000 in order to have the benefits of
    # the space efficient encoding without slowing down too much PFADD,
    # which is O(N) with the sparse encoding. The value can be raised to
    # ~ 10000 when CPU is not a concern, but space is, and the data set is
    # composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
    hll-sparse-max-bytes 3000
    
    # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
    # order to help rehashing the main Redis hash table (the one mapping top-level
    # keys to values). The hash table implementation Redis uses (see dict.c)
    # performs a lazy rehashing: the more operation you run into a hash table
    # that is rehashing, the more rehashing "steps" are performed, so if the
    # server is idle the rehashing is never complete and some more memory is used
    # by the hash table.
    #
    # The default is to use this millisecond 10 times every second in order to
    # actively rehash the main dictionaries, freeing memory when possible.
    #
    # If unsure:
    # use "activerehashing no" if you have hard latency requirements and it is
    # not a good thing in your environment that Redis can reply from time to time
    # to queries with 2 milliseconds delay.
    #
    # use "activerehashing yes" if you don't have such hard requirements but
    # want to free memory asap when possible.
    activerehashing yes
    
    # The client output buffer limits can be used to force disconnection of clients
    # that are not reading data from the server fast enough for some reason (a
    # common reason is that a Pub/Sub client can't consume messages as fast as the
    # publisher can produce them).
    #
    # The limit can be set differently for the three different classes of clients:
    #
    # normal -> normal clients including MONITOR clients
    # slave  -> slave clients
    # pubsub -> clients subscribed to at least one pubsub channel or pattern
    #
    # The syntax of every client-output-buffer-limit directive is the following:
    #
    # client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
    #
    # A client is immediately disconnected once the hard limit is reached, or if
    # the soft limit is reached and remains reached for the specified number of
    # seconds (continuously).
    # So for instance if the hard limit is 32 megabytes and the soft limit is
    # 16 megabytes / 10 seconds, the client will get disconnected immediately
    # if the size of the output buffers reach 32 megabytes, but will also get
    # disconnected if the client reaches 16 megabytes and continuously overcomes
    # the limit for 10 seconds.
    #
    # By default normal clients are not limited because they don't receive data
    # without asking (in a push way), but just after a request, so only
    # asynchronous clients may create a scenario where data is requested faster
    # than it can read.
    #
    # Instead there is a default limit for pubsub and slave clients, since
    # subscribers and slaves receive data in a push fashion.
    #
    # Both the hard or the soft limit can be disabled by setting them to zero.
    client-output-buffer-limit normal 0 0 0
    client-output-buffer-limit slave 256mb 64mb 60
    client-output-buffer-limit pubsub 32mb 8mb 60
    
    # Redis calls an internal function to perform many background tasks, like
    # closing connections of clients in timeout, purging expired keys that are
    # never requested, and so forth.
    #
    # Not all tasks are performed with the same frequency, but Redis checks for
    # tasks to perform according to the specified "hz" value.
    #
    # By default "hz" is set to 10. Raising the value will use more CPU when
    # Redis is idle, but at the same time will make Redis more responsive when
    # there are many keys expiring at the same time, and timeouts may be
    # handled with more precision.
    #
    # The range is between 1 and 500, however a value over 100 is usually not
    # a good idea. Most users should use the default of 10 and raise this up to
    # 100 only in environments where very low latency is required.
    hz 10
    
    # When a child rewrites the AOF file, if the following option is enabled
    # the file will be fsync-ed every 32 MB of data generated. This is useful
    # in order to commit the file to the disk more incrementally and avoid
    # big latency spikes.
    aof-rewrite-incremental-fsync yes
    View Code

    二、配置文件地址

      Redis 的配置文件位于 Redis 安装目录下,文件名为 redis.conf(Windows 名为 redis.windows.conf)。

      

       日常开发中,我们会将它备份一下,然后拷贝一份出来单独配置来执行。

    三、Units单位

      

      1、配置大小单位,开头定义了一些基本的度量单位,只支持bytes,不支持bit;
      2、对大小写不敏感;

    四、INCLUDES包含

        

      和我们的Struts2配置文件类似,可以通过includes包含,redis.conf可以作为总闸,可以包含其他配置文件。

    五、GENERAL通用

      1、Daemonize

        

           no:默认值,默认不以后台方式运行。

        yes:以后台方式运行。

      2、Pidfile

        

         如果以后台方式运行,会在以上路径中生成一个 pidfile 文件。

      3、Port

        

         默认的端口号:6379。

      4、Tcp-backlog

        

        Tcp-backlog
        设置 tcp 的 backlog,backlog其实是一个连接队列,backlog队列总和=未完成三次握手队列 + 已经完成三次握手队列。

        在高并发环境下你需要一个高 backlog 值来避免慢客户端连接问题。

        注意Linux内核会将这个值减小到/proc/sys/net/core/somaxconn的值,所以需要确认增大somaxconn和tcp_max_syn_backlog两个值来达到想要的效果。

      5、Bind

        

         绑定监听的网络连接。

      6、Timeout

        

         设置超时时间,设置为0 禁用 timeout。

      7、Tcp-keepalive

        

         TCP 心跳检测

        单位为秒,如果设置为0,则不会进行Keepalive检测,建议设置成60。

      8、Loglevel

        

         日志级别:debug、verbose、notice、warning

         默认级别:notice。

      9、Logfile

        

         指定日志位置,如果使用标准输出用于日志记录,但不是守护进程,日志将被发送到/dev/null 

      10、Syslog-enabled

        

        是否把日志输出到syslog中

      11、Syslog-ident

        

        指定syslog里的日志标志

      12、Syslog-facility

        

         指定syslog设备,值可以是USER或LOCAL0-LOCAL7

      13、Databases

        

         默认 16 个数据,可以使用 select dbid 来切换数据库。

    六、SNAPSHOTTING快照

      1、save

        默认设置:

        

         格式:

    save  秒钟  写操作次数     当在规定的时间内修改了指定的次数就会进行快照保存
    

          RDB是整个内存的压缩过的Snapshot,RDB的数据结构,可以配置复合的快照触发条件:

         常用设置:

    是1分钟内改了1万次
    或5分钟内改了10次
    或15分钟内改了1次
    

      

        禁用 save:

        

         如果想禁用RDB持久化的策略,只要不设置任何save指令,或者给save传入一个空字符串参数也可以。

      2、stop-writes-on-bgsave-error

        

         stop-writes-on-bgsave-error 默认值为 yes。

    yes:默认是 yes,当 bgsave 出错了,就不再写入了
    no:如果配置成no,表示你不在乎数据不一致或者有其他的手段发现和控制
    

      

      3、rdbcompression

         

        rdbcompression:对于存储到磁盘中的快照,可以设置是否进行压缩存储。如果是的话,redis会采用LZF算法进行压缩。

        如果你不想消耗CPU来进行压缩的话,可以设置为关闭此功能。

      4、rdbchecksum

        

        rdbchecksum:在存储快照后,还可以让redis使用CRC64算法来进行数据校验,但是这样做会增加大约10%的性能消耗,如果希望获取到最大的性能提升,可以关闭此功能。

      5、dbfilename

        

         RDB 生成默认的快照文件名称和恢复使用的文件名称。

      6、dir

        

         DB将被写入这个目录中,文件名在上面使用 'dbfilename' 配置指令指定。  

    七、REPLICATION复制

    八、SECURITY安全

      访问密码的查看、设置和取消

      

    九、LIMITS限制

      1、Maxclients

        

        设置redis同时可以与多少个客户端进行连接。默认情况下为10000个客户端。

        当你无法设置进程文件句柄限制时,redis会设置为当前的文件句柄限制值减去32,因为redis会为自身内部处理逻辑留一些句柄出来。如果达到了此限制,redis则会拒绝新的连接请求,并且向这些连接请求方发出“max number of clients reached”以作回应。

      2、Maxmemory

        

        设置redis可以使用的内存量。一旦到达内存使用上限,redis将会试图移除内部数据,移除规则可以通过maxmemory-policy来指定。

        如果redis无法根据移除规则来移除内存中的数据,或者设置了“不允许移除”,那么redis则会针对那些需要申请内存的指令返回错误信息,比如SET、LPUSH等。

        但是对于无内存申请的指令,仍然会正常响应,比如GET等。如果你的redis是主redis(说明你的redis有从redis),那么在设置内存使用上限时,需要在系统中留出一些内存空间给同步队列缓存,只有在你设置的是“不移除”的情况下,才不用考虑这个因素。

      3、Maxmemory-policy

        

         指定 Redis 的过期策略:

    (1)volatile-lru:使用LRU算法移除key,只对设置了过期时间的键
    (2)allkeys-lru:使用LRU算法移除key
    (3)volatile-random:在过期集合中移除随机的key,只对设置了过期时间的键
    (4)allkeys-random:移除随机的key
    (5)volatile-ttl:移除那些TTL值最小的key,即那些最近要过期的key
    (6)noeviction:不进行移除。针对写操作,只是返回错误信息
    

      

      4、Maxmemory-samples

        

        设置样本数量,LRU算法和最小TTL算法都并非是精确的算法,而是估算值,所以你可以设置样本的大小,redis默认会检查这么多个key并选择其中LRU的那个。

    十、APPEND ONLY MODE追加

      1、 appendonly

        

           是否开启 AOF,默认为 No,不开启。

      2、 appendfilename

        

       默认的 aof 文件名:appendonly.aof

      3、Appendfsync

        

           配置 AOF 同步配置:

    每修改同步:appendfsync always   同步持久化 每次发生数据变更会被立即记录到磁盘  性能较差但数据完整性比较好
    每秒同步:appendfsync everysec    异步操作,每秒记录   如果一秒内宕机,有数据丢失(默认值)
    不同步:appendfsync no   从不同步
    

      

      4、No-appendfsync-on-rewrite

      

       重写时是否可以运用Appendfsync,用默认no即可,保证数据安全性。

      5、Auto-aof-rewrite-min-size

        

          设置重写的基准值,默认是 64MB。

      6、Auto-aof-rewrite-percentage

        

       设置重写的基准值。默认配置是上次 rewrite 后大小的一倍。

      7、aof-load-truncated

        

        

    十一、常见配置redis.conf介绍

      参数说明
      redis.conf 配置项说明如下:

    1. Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程
      daemonize no
    
    2. 当Redis以守护进程方式运行时,Redis默认会把pid写入/var/run/redis.pid文件,可以通过pidfile指定
      pidfile /var/run/redis.pid
    
    3. 指定Redis监听端口,默认端口为6379,作者在自己的一篇博文中解释了为什么选用6379作为默认端口,因为6379在手机按键上MERZ对应的号码,而MERZ取自意大利歌女Alessia Merz的名字
      port 6379
    
    4. 绑定的主机地址
      bind 127.0.0.1
    
    5.当 客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能
      timeout 300
    
    6. 指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose
      loglevel verbose
    
    7. 日志记录方式,默认为标准输出,如果配置Redis为守护进程方式运行,而这里又配置为日志记录方式为标准输出,则日志将会发送给/dev/null
      logfile stdout
    
    8. 设置数据库的数量,默认数据库为0,可以使用SELECT <dbid>命令在连接上指定数据库id
      databases 16
    
    9. 指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合
      save <seconds> <changes>
      Redis默认配置文件中提供了三个条件:
      save 900 1
      save 300 10
      save 60 10000
      分别表示900秒(15分钟)内有1个更改,300秒(5分钟)内有10个更改以及60秒内有10000个更改。
     
    10. 指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,可以关闭该选项,但会导致数据库文件变的巨大
      rdbcompression yes
    
    11. 指定本地数据库文件名,默认值为dump.rdb
      dbfilename dump.rdb
    
    12. 指定本地数据库存放目录
      dir ./
    
    13. 设置当本机为slave服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步
      slaveof <masterip> <masterport>
    
    14. 当master服务设置了密码保护时,slave服务连接master的密码
      masterauth <master-password>
    
    15. 设置Redis连接密码,如果配置了连接密码,客户端在连接Redis时需要通过AUTH <password>命令提供密码,默认关闭
      requirepass foobared
    
    16. 设置同一时间最大客户端连接数,默认无限制,Redis可以同时打开的客户端连接数为Redis进程可以打开的最大文件描述符数,如果设置 maxclients 0,表示不作限制。当客户端连接数到达限制时,Redis会关闭新的连接并向客户端返回max number of clients reached错误信息
      maxclients 128
    
    17. 指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,Redis会先尝试清除已到期或即将到期的Key,当此方法处理 后,仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行读取操作。Redis新的vm机制,会把Key存放内存,Value会存放在swap区
      maxmemory <bytes>
    
    18. 指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为 redis本身同步数据文件是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认为no
      appendonly no
    
    19. 指定更新日志文件名,默认为appendonly.aof
       appendfilename appendonly.aof
    
    20. 指定更新日志条件,共有3个可选值: 
      no:表示等操作系统进行数据缓存同步到磁盘(快) 
      always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全) 
      everysec:表示每秒同步一次(折衷,默认值)
      appendfsync everysec
     
    21. 指定是否启用虚拟内存机制,默认值为no,简单的介绍一下,VM机制将数据分页存放,由Redis将访问量较少的页即冷数据swap到磁盘上,访问多的页面由磁盘自动换出到内存中(在后面的文章我会仔细分析Redis的VM机制)
       vm-enabled no
    
    22. 虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享
       vm-swap-file /tmp/redis.swap
    
    23. 将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,所有索引数据都是内存存储的(Redis的索引数据 就是keys),也就是说,当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0
       vm-max-memory 0
    
    24. Redis swap文件分成了很多的page,一个对象可以保存在多个page上面,但一个page上不能被多个对象共享,vm-page-size是要根据存储的 数据大小来设定的,作者建议如果存储很多小对象,page大小最好设置为32或者64bytes;如果存储很大大对象,则可以使用更大的page,如果不 确定,就使用默认值
       vm-page-size 32
    
    25. 设置swap文件中的page数量,由于页表(一种表示页面空闲或使用的bitmap)是在放在内存中的,,在磁盘上每8个pages将消耗1byte的内存。
       vm-pages 134217728
    
    26. 设置访问swap文件的线程数,最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的,可能会造成比较长时间的延迟。默认值为4
       vm-max-threads 4
    
    27. 设置在向客户端应答时,是否把较小的包合并为一个包发送,默认为开启
      glueoutputbuf yes
    
    28. 指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法
      hash-max-zipmap-entries 64
      hash-max-zipmap-value 512
    
    29. 指定是否激活重置哈希,默认为开启(后面在介绍Redis的哈希算法时具体介绍)
      activerehashing yes
    
    30. 指定包含其它的配置文件,可以在同一主机上多个Redis实例之间使用同一份配置文件,而同时各个实例又拥有自己的特定配置文件
      include /path/to/local.conf
    

      

       Tips:蓝色标题的为通用设置。

  • 相关阅读:
    R语言代写实现 Copula 算法建模依赖性案例分析报告
    R语言代写回归中的Hosmer-Lemeshow拟合优度检验
    ggplot2如何在R语言代写中绘制表格
    用SAS代写进行泊松,零膨胀泊松和有限混合Poisson模型分析
    R语言代写实现有限混合模型建模分析
    R语言代写使用混合模型进行聚类
    BZOJ 4370: [IOI2015]horses马 线段树+贪心+对数
    luoguP5824 十二重计数法 组合+生成函数+第二类斯特林数
    BZOJ 5296: [Cqoi2018]破解D-H协议 BSGS
    BZOJ 2242: [SDOI2011]计算器 BSGS
  • 原文地址:https://www.cnblogs.com/niujifei/p/15749758.html
Copyright © 2020-2023  润新知