• 前向传播(张量)- 实战


    手写数字识别流程

    • MNIST手写数字集7000*10张图片
    • 60k张图片训练,10k张图片测试
    • 每张图片是28*28,如果是彩色图片是28*28*3
    • 0-255表示图片的灰度值,0表示纯白,255表示纯黑
    • 打平28*28的矩阵,得到28*28=784的向量
    • 对于b张图片得到[b,784];然后对于b张图片可以给定编码
    • 把上述的普通编码给定成独热编码,但是独热编码都是概率值,并且概率值相加为1,类似于softmax回归
    • 套用线性回归公式
    • X[b,784] W[784,10] b[10] 得到 [b,10]
    • 高维图片实现非常复杂,一个线性模型无法完成,因此可以添加非线性因子
    • f(X@W+b),使用激活函数让其非线性化,引出relu函数
    • 用了激活函数,模型还是太简单
    • 使用工厂
      • H1 =relu(X@W1+b1)
      • H2 = relu(h1@W2+b2)
      • Out = relu(h2@W3+b3)
    • 第一步,把[1,784]变成[1,512]变成[1,256]变成[1,10]
    • 得到[1,10]后将结果进行独热编码
    • 使用欧氏距离或者使用mse进行误差度量
    • [1,784]通过三层网络输出一个[1,10]

    前向传播(张量)- 实战

    import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras import datasets
    import os
    
    # do not print irrelevant information
    # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    # x: [60k,28,28]
    # y: [60k]
    (x, y), _ = datasets.mnist.load_data()
    
    Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
    11493376/11490434 [==============================] - 1s 0us/step
    
    # transform Tensor
    # x: [0~255] ==》 [0~1.]
    x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
    y = tf.convert_to_tensor(y, dtype=tf.int32)
    
    f'x.shape: {x.shape}, y.shape: {y.shape}, x.dtype: {x.dtype}, y.dtype: {y.dtype}'
    
    "x.shape: (60000, 28, 28), y.shape: (60000,), x.dtype: <dtype: 'float32'>, y.dtype: <dtype: 'int32'>"
    
    f'min_x: {tf.reduce_min(x)}, max_x: {tf.reduce_max(x)}'
    
    'min_x: 0.0, max_x: 1.0'
    
    f'min_y: {tf.reduce_min(y)}, max_y: {tf.reduce_max(y)}'
    
    'min_y: 0, max_y: 9'
    
    # batch of 128
    train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
    train_iter = iter(train_db)
    sample = next(train_iter)
    f'batch: {sample[0].shape,sample[1].shape}'
    
    'batch: (TensorShape([128, 28, 28]), TensorShape([128]))'
    
    # [b,784] ==> [b,256] ==> [b,128] ==> [b,10]
    # [dim_in,dim_out],[dim_out]
    w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
    b1 = tf.Variable(tf.zeros([256]))
    w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
    b2 = tf.Variable(tf.zeros([128]))
    w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
    b3 = tf.Variable(tf.zeros([10]))
    
    # learning rate
    lr = 1e-3
    
    for epoch in range(10):  # iterate db for 10
        # tranin every train_db
        for step, (x, y) in enumerate(train_db):
            # x: [128,28,28]
            # y: [128]
    
            # [b,28,28] ==> [b,28*28]
            x = tf.reshape(x, [-1, 28*28])
    
            with tf.GradientTape() as tape:  # only data types of tf.variable are logged
                # x: [b,28*28]
                # h1 = x@w1 + b1
                # [b,784]@[784,256]+[256] ==> [b,256] + [256] ==> [b,256] + [b,256]
                h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256])
                h1 = tf.nn.relu(h1)
                # [b,256] ==> [b,128]
                # h2 = x@w2 + b2  # b2 can broadcast automatic
                h2 = h1 @ w2 + b2
                h2 = tf.nn.relu(h2)
                # [b,128] ==> [b,10]
                out = h2 @ w3 + b3
    
                # compute loss
                # out: [b,10]
                # y:[b] ==> [b,10]
                y_onehot = tf.one_hot(y, depth=10)
    
                # mse = mean(sum(y-out)^2)
                # [b,10]
                loss = tf.square(y_onehot - out)
                # mean:scalar
                loss = tf.reduce_mean(loss)
    
            # compute gradients
            grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
            # w1 = w1 - lr * w1_grad
            # w1 = w1 - lr * grads[0]  # not in situ update
            # in situ update
            w1.assign_sub(lr * grads[0])
            b1.assign_sub(lr * grads[1])
            w2.assign_sub(lr * grads[2])
            b2.assign_sub(lr * grads[3])
            w3.assign_sub(lr * grads[4])
            b3.assign_sub(lr * grads[5])
    
            if step % 100 == 0:
                print(f'epoch:{epoch}, step: {step}, loss:{float(loss)}')
    
    epoch:0, step: 0, loss:0.5366693735122681
    epoch:0, step: 100, loss:0.23276552557945251
    epoch:0, step: 200, loss:0.19647717475891113
    epoch:0, step: 300, loss:0.17389704287052155
    epoch:0, step: 400, loss:0.1731622964143753
    epoch:1, step: 0, loss:0.16157487034797668
    epoch:1, step: 100, loss:0.16654588282108307
    epoch:1, step: 200, loss:0.15311869978904724
    epoch:1, step: 300, loss:0.14135733246803284
    epoch:1, step: 400, loss:0.14423415064811707
    epoch:2, step: 0, loss:0.13703864812850952
    epoch:2, step: 100, loss:0.14255204796791077
    epoch:2, step: 200, loss:0.1302051544189453
    epoch:2, step: 300, loss:0.12224273383617401
    epoch:2, step: 400, loss:0.12742099165916443
    epoch:3, step: 0, loss:0.1219201311469078
    epoch:3, step: 100, loss:0.12757658958435059
    epoch:3, step: 200, loss:0.11587800830602646
    epoch:3, step: 300, loss:0.10984969139099121
    epoch:3, step: 400, loss:0.11641304194927216
    epoch:4, step: 0, loss:0.11171815544366837
    epoch:4, step: 100, loss:0.11717887222766876
    epoch:4, step: 200, loss:0.10604140907526016
    epoch:4, step: 300, loss:0.10111508518457413
    epoch:4, step: 400, loss:0.10865814983844757
    epoch:5, step: 0, loss:0.10434548556804657
    epoch:5, step: 100, loss:0.10952303558588028
    epoch:5, step: 200, loss:0.09875871241092682
    epoch:5, step: 300, loss:0.09467941522598267
    epoch:5, step: 400, loss:0.10282392799854279
    epoch:6, step: 0, loss:0.09874211996793747
    epoch:6, step: 100, loss:0.10355912148952484
    epoch:6, step: 200, loss:0.09315416216850281
    epoch:6, step: 300, loss:0.08971598744392395
    epoch:6, step: 400, loss:0.0982089415192604
    epoch:7, step: 0, loss:0.09428335726261139
    epoch:7, step: 100, loss:0.09877124428749084
    epoch:7, step: 200, loss:0.08866965025663376
    epoch:7, step: 300, loss:0.08573523908853531
    epoch:7, step: 400, loss:0.09440126270055771
    epoch:8, step: 0, loss:0.09056715667247772
    epoch:8, step: 100, loss:0.09483197331428528
    epoch:8, step: 200, loss:0.0849832147359848
    epoch:8, step: 300, loss:0.08246967941522598
    epoch:8, step: 400, loss:0.09117519855499268
    epoch:9, step: 0, loss:0.08741479367017746
    epoch:9, step: 100, loss:0.09150294959545135
    epoch:9, step: 200, loss:0.08185736835002899
    epoch:9, step: 300, loss:0.07972464710474014
    epoch:9, step: 400, loss:0.08842341601848602
  • 相关阅读:
    android的进度条使用
    strlen和sizeof的差别
    2012 苏州瑞晟微电子 面试(共两轮,每次近一个半小时)
    最小二乘法多项式曲线拟合原理与实现
    敏捷开发流程总结
    duplicate symbol _*** in:
    C#操作Excel初探
    设计模式(一)工厂模式Factory(创建型)
    Bulk Insert命令具体
    FindWindowEx使用方法
  • 原文地址:https://www.cnblogs.com/nickchen121/p/10849484.html
Copyright © 2020-2023  润新知