Hive支持自定义map与reduce script。接下来我用一个简单的wordcount例子加以说明。
如果自己使用Java开发,需要处理System.in,System,out以及key/value的各种逻辑,比较麻烦。有人开发了一个小框架,可以让我们使用与Hadoop中map与reduce相似的写法,只关注map与reduce即可。如今此框架已经集成在Hive中,就是$HIVE_HOME/lib/hive-contrib-2.3.0.jar,hive版本不同,对应的contrib名字可能不同。
开发工具:intellij
JDK:jdk1.7
hive:2.3.0
hadoop:2.8.1
一、开发map与reduce
“map类 public class WordCountMap { public static void main(String args[]) throws Exception{ new GenericMR().map(System.in, System.out, new Mapper() { @Override public void map(String[] strings, Output output) throws Exception { for(String str:strings){ String[] strs=str.split("\W+");//如果源文本文件是以 分隔的,则不需要再拆分,传入的strings就是每行拆分好的单词 for(String str_2:strs) { output.collect(new String[]{str_2, "1"}); } } } }); } } "reduce类 public class WordCountReducer { public static void main(String args[]) throws Exception{ new GenericMR().reduce(System.in, System.out, new Reducer() { @Override public void reduce(String s, Iterator<String[]> iterator, Output output) throws Exception { int sum=0; while(iterator.hasNext()){ Integer count=Integer.valueOf(iterator.next()[1]); sum+=count; } output.collect(new String[]{s,String.valueOf(sum)}); } }); } }
二、导出jar包
然后导出Jar包(包含hive-contrib-2.3.0),假如导出jar包名为wordcount.jar
三、编写hive sql
drop table if exists raw_lines; -- create table raw_line, and read all the lines in '/user/inputs', this is the path on your local HDFS create external table if not exists raw_lines(line string) ROW FORMAT DELIMITED stored as textfile location '/user/inputs'; drop table if exists word_count; -- create table word_count, this is the output table which will be put in '/user/outputs' as a text file, this is the path on your local HDFS create external table if not exists word_count(word string, count int) ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' lines terminated by ' ' STORED AS TEXTFILE LOCATION '/user/outputs/'; -- add the mapper&reducer scripts as resources, please change your/local/path --must use "add file",not "add jar",or,hive won't find map and reduce main class add file your/local/path/wordcount.jar; from ( from raw_lines map raw_lines.line --call the mapper here using 'java -cp wordcount.jar WordCountMap' as word, count cluster by word) map_output insert overwrite table word_count reduce map_output.word, map_output.count --call the reducer here using 'java -cp wordcount.jar WordCountReducer' as word,count;
此hive sql保存为wordcount.hql
四、执行hive sql
beeline -u [hiveserver] -n username -f wordcount.hql
简单说下Hive的自定义map与reduce内部原理:
hive读取文本文件,然后将其一行行输入系统标准输入中,用户自定义的Map读取标准输入流中数据,一行行处理,然后将其按照一定格式(例如:"key value")输出到标准输出流中,然后hive会将输出的字符串进行排序,然后再送到标准输入流中,Reduce再从标准输入流中读取数据进行相应处理,处理完成后,再送到标准输出流中,Hive再对Reduce结果进行处理存入表中。