• Memoization-329. Longest Increasing Path in a Matrix


    Given an integer matrix, find the length of the longest increasing path.

    From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

    Example 1:

    nums = [
      [9,9,4],
      [6,6,8],
      [2,1,1]
    ]
    

    Return 4
    The longest increasing path is [1, 2, 6, 9].

    Example 2:

    nums = [
      [3,4,5],
      [3,2,6],
      [2,2,1]
    ]
    

    Return 4
    The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

    Credits:
    Special thanks to @dietpepsi for adding this problem and creating all test cases.

    int dx[] = { 1 , -1, 0 , 0  };
    int dy[] = { 0 , 0 , 1 , -1 };
    class Solution {
    public:
        int dfs(int x, int y, const int &m,const int &n,vector<vector<int>>& matrix, vector<vector<int>>& dis) {
            if (dis[x][y]) return dis[x][y];
     
            for (int i = 0; i < 4; i++) {
                int nx = x + dx[i];
                int ny = y + dy[i];
                if (nx >= 0 && ny >= 0 && nx < m && ny < n && matrix[nx][ny] > matrix[x][y]) {
                    dis[x][y] = max(dis[x][y], dfs(nx, ny, m, n, matrix, dis));
                }
            }
            return ++dis[x][y];
        }
     
        int longestIncreasingPath(vector<vector<int>>& matrix) {
            if (!matrix.size()) return 0;
            int m = matrix.size(), n = matrix[0].size();
            vector<vector<int> > dis(m, vector<int>(n, 0));
            int ans = 0;
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j++) {
                    ans = max(ans, dfs( i, j, m, n, matrix, dis));
                }
            }
            return ans;
        }
    };
  • 相关阅读:
    Django组件——forms组件
    Django组件——分页器(paginator)
    Django和Ajax
    多表操作
    输入DStream和Receiver详解
    spark中streamingContext的使用详解
    spark与storm的对比
    spark1.5引进内置函数
    spark 分析sql内容再插入到sql表中
    spark之数据源之自动分区推断
  • 原文地址:https://www.cnblogs.com/msymm/p/8278262.html
Copyright © 2020-2023  润新知