• [HEOI2016/TJOI2016]字符串


    嘟嘟嘟


    今天复习一下SAM。


    lcp固然不好做,干脆直接翻过来变成后缀。首先答案一定满足单调性,所以我们二分lcp的长度(mid),然后判断(s[d ldots d + mid - 1])是否在(s[b ldots a])(别忘了整个串是反过来的)中出现即可。
    怎么判断是否出现呢?其实就是判断这个子串的endpos是否在(s[b + mid - 1 ldots a])中,因此我们要求出SAM上的每一个节点的endpos集合,这就要用到线段树合并了。
    需要注意的是,并不是直接在(d)在SAM上的节点的线段树开始找,需要一直往上跳祖先,直到满足这个节点的len最小,且仍(geqslant mid)。因为这样endpos集合的元素就会更多,找到的概率就更大。


    线段树合并没有垃圾回收,不过出题人比较良心,不卡。

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 1e5 + 5;
    const int N = 20;
    inline ll read()
    {
      ll ans = 0;
      char ch = getchar(), last = ' ';
      while(!isdigit(ch)) last = ch, ch = getchar();
      while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      if(last == '-') ans = -ans;
      return ans;
    }
    inline void write(ll x)
    {
      if(x < 0) x = -x, putchar('-');
      if(x >= 10) write(x / 10);
      putchar(x % 10 + '0');
    }
    
    char s[maxn];
    int n, m, len;
    
    struct Tree
    {
      int ls, rs, sum;
    }t[maxn * N * N];
    int root[maxn << 1], cur[maxn << 1], tcnt = 0;
    In void update(int& now, int l, int r, int id)
    {
      if(!now) now = ++tcnt;
      if(l == r) {++t[now].sum; return;}
      int mid = (l + r) >> 1;
      if(id <= mid) update(t[now].ls, l, mid, id);
      else update(t[now].rs, mid + 1, r, id);
      t[now].sum = t[t[now].ls].sum + t[t[now].rs].sum;
    }
    In int merge(int x, int y, int l, int r)
    {
      if(!x || !y) return x | y;
      if(l == r) {t[x].sum += t[y].sum; return x;}
      int mid = (l + r) >> 1, z = ++tcnt; 
      t[z].ls = merge(t[x].ls, t[y].ls, l, mid);
      t[z].rs = merge(t[x].rs, t[y].rs, mid + 1, r);
      t[z].sum = t[t[z].ls].sum + t[t[z].rs].sum;
      return z;
    }
    In int query(int now, int L, int R, int l, int r)
    {
      if(!now) return 0;
      if(L == l && R == r) return t[now].sum;
      int mid = (l + r) >> 1;
      if(R <= mid) return query(t[now].ls, L, R, l, mid);
      else if(L > mid) return query(t[now].rs, L, R, mid + 1, r);
      else return query(t[now].ls, L, mid, l, mid) + query(t[now].rs, mid + 1, R, mid + 1, r);
    }
    
    struct Sam
    {
      int las, cnt;
      int tra[maxn << 1][27], len[maxn << 1], link[maxn << 1];
      In void init() {link[las = cnt = 0] = -1;}
      In void insert(int c)
      {
        int now = ++cnt, p = las;
        len[now] = len[las] + 1;
        while(~p && !tra[p][c]) tra[p][c] = now, p = link[p];
        if(p == -1) link[now] = 0;
        else
          {
    	int q = tra[p][c];
    	if(len[q] == len[p] + 1) link[now] = q;
    	else
    	  {
    	    int clo = ++cnt;
    	    memcpy(tra[clo], tra[q], sizeof(tra[q]));
    	    len[clo] = len[p] + 1;
    	    link[clo] = link[q], link[q] = link[now] = clo;
    	    while(~p && tra[p][c] == q) tra[p][c] = clo, p = link[p];
    	  }
          }
        las = now;
      }
      int buc[maxn << 1], pos[maxn << 1];
      In void solve()
      {
        for(int i = 1; i <= cnt; ++i) ++buc[len[i]];
        for(int i = 1; i <= cnt; ++i) buc[i] += buc[i - 1];
        for(int i = 1; i <= cnt; ++i) pos[buc[len[i]]--] = i;
        for(int i = cnt; i; --i)
          {
    	int now = pos[i], fa = link[now];
    	root[fa] = merge(root[fa], root[now], 0, n - 1);
          }
      }
    }S;
    
    int fa[N + 2][maxn << 1];
    In bool judge(int len, int x, int L, int R)
    {
      for(int i = 20; i >= 0; --i)
        if(fa[i][x] && S.len[fa[i][x]] >= len) x = fa[i][x];
      return query(root[x], L + len - 1, R, 0, n - 1);
    }
    
    int main()
    {
      //freopen("ha.in", "r", stdin);
      //freopen("ha.out", "w", stdout);
      n = read(), m = read();
      scanf("%s", s);
      len = strlen(s); S.init();
      reverse(s, s + len);
      for(int i = 0; i < n; ++i)
        {
          S.insert(s[i] - 'a'); cur[i] = S.las;
          update(root[cur[i]], 0, n - 1, i);
        }
      S.solve();
      for(int i = 1; i <= S.cnt; ++i) fa[0][i] = S.link[i];
      for(int j = 1; j <= N; ++j)
        for(int i = 1; i <= S.cnt; ++i) fa[j][i] = fa[j - 1][fa[j - 1][i]];
      for(int i = 1; i <= m; ++i)
        {
          int a = n - read(), b = n - read(), c = n - read(), d = n - read();
          int L = 0, R = min(a - b + 1, c - d + 1);
          while(L < R)
    	{
    	  int mid = (L + R + 1) >> 1;
    	  if(judge(mid, cur[c], b, a)) L = mid;
    	  else R = mid - 1;
    	}
          write(L), enter;
        }
      return 0;
    }
    
  • 相关阅读:
    python 线程
    python 进程
    python 异常处理
    python 访问权限
    python 类的继承
    python 常见内置函数setattr、getattr、delattr、setitem、getitem、delitem
    SAPHANA学习(21):SQL Function(U)
    SAPHANA学习(20):SQL Function(T)
    SAPHANA学习(19):SQL Function(S)
    SAPHANA学习(18):SQL Function(R)
  • 原文地址:https://www.cnblogs.com/mrclr/p/10648694.html
Copyright © 2020-2023  润新知