嘟嘟嘟
一句话:最优比率生成树。
因为是完全图,所以kruskal会TLE,还必须用prim。为此现学了一下。
prim的大概流程是这样的:
1.先随便选一个点
2.从通过这个点的所有出边更新所有点到现在的联通块的最小距离。
3.选离联通块最近的点加入块中,答案加上该条边。
4.重复第2步(n - 1)次。
复杂度(O(n ^ 2))。
所以这道题的总复杂度为(O(n ^ 2 log{x}))。(x)为值域,开到(1e9)会TLE,其实(100)就够了。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-6;
const int maxn = 1e3 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n;
struct Node
{
int x, y, p;
}t[maxn];
db dis[maxn], mid;
bool vis[maxn];
db Fabs(db x) {return x > 0 ? x : -x;}
inline db Dis(const int& i, const int& j)
{
return sqrt((t[i].x - t[j].x) * (t[i].x - t[j].x) + (t[i].y - t[j].y) * (t[i].y - t[j].y));
}
inline db calc(const int& i, const int& j)
{
return 1.0 * Fabs(t[i].p - t[j].p) - mid * Dis(i, j);
}
inline bool judge()
{
for(int i = 1; i <= n; ++i) vis[i] = 0, dis[i] = INF;
int now = 1, cnt = 0;
db ret = 0;
while(++cnt < n)
{
vis[now] = 1;
for(int i = 1; i <= n; ++i) if(!vis[i]) dis[i] = min(dis[i], calc(now, i));
db Min = INF;
for(int i = 1; i <= n; ++i) if(!vis[i] && dis[i] < Min) Min = dis[i], now = i;
ret += Min;
}
return ret > eps;
}
int main()
{
while(scanf("%d", &n) && n)
{
for(int i = 1; i <= n; ++i) t[i].x = read(), t[i].y = read(), t[i].p = read();
db L = 0, R = 100;
while(R - L > eps)
{
mid = (R + L) / 2;
if(judge()) L = mid;
else R = mid;
}
printf("%.3f
", L);
}
return 0;
}