嘟嘟嘟cf
嘟嘟嘟luogu
刚开始我看成了对于一个点(i),存在一个点(j)满足三个条件之一,而不是任意的(j)。结果自然(gg)了,第二个点就(WA)了。
也不知怎么来的思路:平面分治。
先把所有点按(x)排序,然后规定一个中间点(a_{mid})。两边的点向中间点作投影,这样对于任意的在左半部分的点(i)和任意的在右半部分的点(j),必定满足条件。
然后我们在分治到([L, mid - 1])和([mid + 1, R])中,解决同侧点的问题。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<map>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 2e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, cnt;
struct Node
{
int x, y;
bool operator < (const Node& oth)const
{
return x < oth.x || (x == oth.x && y < oth.y);
}
bool operator == (const Node& oth)const
{
return x == oth.x && y == oth.y;
}
}a[maxn];
void solve(int L, int R)
{
if(L > R) return;
int mid = (L + R) >> 1;
for(int i = L; i <= R; ++i)
a[++n] = (Node){a[mid].x, a[i].y};
solve(L, mid - 1); solve(mid + 1, R);
}
int main()
{
n = read();
for(int i = 1; i <= n; ++i) a[i].x = read(), a[i].y = read();
sort(a + 1, a + n + 1);
solve(1, n);
sort(a + 1, a + n + 1);
int _n = unique(a + 1, a + n + 1) - a - 1;
write(_n), enter;
for(int i = 1; i <= _n; ++i) write(a[i].x), space, write(a[i].y), enter;
return 0;
}