• java 多项式


    /******************************************************************************
     *  Compilation:  javac Polynomial.java
     *  Execution:    java Polynomial
     *
     *  Polynomials with integer coefficients.
     *
     *  % java Polynomial
     *  zero(x)     = 0
     *  p(x)        = 4x^3 + 3x^2 + 2x + 1
     *  q(x)        = 3x^2 + 5
     *  p(x) + q(x) = 4x^3 + 6x^2 + 2x + 6
     *  p(x) * q(x) = 12x^5 + 9x^4 + 26x^3 + 18x^2 + 10x + 5
     *  p(q(x))     = 108x^6 + 567x^4 + 996x^2 + 586
     *  p(x) - p(x) = 0
     *  0 - p(x)    = -4x^3 - 3x^2 - 2x - 1
     *  p(3)        = 142
     *  p'(x)       = 12x^2 + 6x + 2
     *  p''(x)      = 24x + 6
     *
     ******************************************************************************/
    
    package edu.princeton.cs.algs4;
    
    /**
     *  The {@code Polynomial} class represents a polynomial with integer
     *  coefficients.
     *  Polynomials are immutable: their values cannot be changed after they
     *  are created.
     *  It includes methods for addition, subtraction, multiplication, composition,
     *  differentiation, and evaluation.
     *  <p>
     *  For additional documentation,
     *  see <a href="https://algs4.cs.princeton.edu/99scientific">Section 9.9</a> of
     *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
     *
     *  @author Robert Sedgewick
     *  @author Kevin Wayne
     */
    public class Polynomial {
        private int[] coef;   // coefficients p(x) = sum { coef[i] * x^i }
        private int degree;   // degree of polynomial (-1 for the zero polynomial)
    
        /**
         * Initializes a new polynomial a x^b
         * @param a the leading coefficient
         * @param b the exponent
         * @throws IllegalArgumentException if {@code b} is negative
         */
        public Polynomial(int a, int b) {
            if (b < 0) {
                throw new IllegalArgumentException("exponent cannot be negative: " + b);
            }
            coef = new int[b+1];
            coef[b] = a;
            reduce();
        }
    
        // pre-compute the degree of the polynomial, in case of leading zero coefficients
        // (that is, the length of the array need not relate to the degree of the polynomial)
        private void reduce() {
            degree = -1;
            for (int i = coef.length - 1; i >= 0; i--) {
                if (coef[i] != 0) {
                    degree = i;
                    return;
                }
            }
        }
    
        /**
         * Returns the degree of this polynomial.
         * @return the degree of this polynomial, -1 for the zero polynomial.
         */
        public int degree() {
            return degree;
        }
    
        /**
         * Returns the sum of this polynomial and the specified polynomial.
         *
         * @param  that the other polynomial
         * @return the polynomial whose value is {@code (this(x) + that(x))}
         */
        public Polynomial plus(Polynomial that) {
            Polynomial poly = new Polynomial(0, Math.max(this.degree, that.degree));
            for (int i = 0; i <= this.degree; i++) poly.coef[i] += this.coef[i];
            for (int i = 0; i <= that.degree; i++) poly.coef[i] += that.coef[i];
            poly.reduce();
            return poly;
        }
    
        /**
         * Returns the result of subtracting the specified polynomial
         * from this polynomial.
         *
         * @param  that the other polynomial
         * @return the polynomial whose value is {@code (this(x) - that(x))}
         */
        public Polynomial minus(Polynomial that) {
            Polynomial poly = new Polynomial(0, Math.max(this.degree, that.degree));
            for (int i = 0; i <= this.degree; i++) poly.coef[i] += this.coef[i];
            for (int i = 0; i <= that.degree; i++) poly.coef[i] -= that.coef[i];
            poly.reduce();
            return poly;
        }
    
        /**
         * Returns the product of this polynomial and the specified polynomial.
         * Takes time proportional to the product of the degrees.
         * (Faster algorithms are known, e.g., via FFT.)
         *
         * @param  that the other polynomial
         * @return the polynomial whose value is {@code (this(x) * that(x))}
         */
        public Polynomial times(Polynomial that) {
            Polynomial poly = new Polynomial(0, this.degree + that.degree);
            for (int i = 0; i <= this.degree; i++)
                for (int j = 0; j <= that.degree; j++)
                    poly.coef[i+j] += (this.coef[i] * that.coef[j]);
            poly.reduce();
            return poly;
        }
    
        /**
         * Returns the composition of this polynomial and the specified
         * polynomial.
         * Takes time proportional to the product of the degrees.
         * (Faster algorithms are known, e.g., via FFT.)
         *
         * @param  that the other polynomial
         * @return the polynomial whose value is {@code (this(that(x)))}
         */
        public Polynomial compose(Polynomial that) {
            Polynomial poly = new Polynomial(0, 0);
            for (int i = this.degree; i >= 0; i--) {
                Polynomial term = new Polynomial(this.coef[i], 0);
                poly = term.plus(that.times(poly));
            }
            return poly;
        }
    
    
        /**       
         * Compares this polynomial to the specified polynomial.
         *       
         * @param  other the other polynoimal
         * @return {@code true} if this polynomial equals {@code other};
         *         {@code false} otherwise
         */
        @Override
        public boolean equals(Object other) {
            if (other == this) return true;
            if (other == null) return false;
            if (other.getClass() != this.getClass()) return false;
            Polynomial that = (Polynomial) other;
            if (this.degree != that.degree) return false;
            for (int i = this.degree; i >= 0; i--)
                if (this.coef[i] != that.coef[i]) return false;
            return true;
        }
    
        /**
         * Returns the result of differentiating this polynomial.
         *
         * @return the polynomial whose value is {@code this'(x)}
         */
        public Polynomial differentiate() {
            if (degree == 0) return new Polynomial(0, 0);
            Polynomial poly = new Polynomial(0, degree - 1);
            poly.degree = degree - 1;
            for (int i = 0; i < degree; i++)
                poly.coef[i] = (i + 1) * coef[i + 1];
            return poly;
        }
    
        /**
         * Returns the result of evaluating this polynomial at the point x.
         *
         * @param  x the point at which to evaluate the polynomial
         * @return the integer whose value is {@code (this(x))}
         */
        public int evaluate(int x) {
            int p = 0;
            for (int i = degree; i >= 0; i--)
                p = coef[i] + (x * p);
            return p;
        }
    
        /**
         * Compares two polynomials by degree, breaking ties by coefficient of leading term.
         *
         * @param  that the other point
         * @return the value {@code 0} if this polynomial is equal to the argument
         *         polynomial (precisely when {@code equals()} returns {@code true});
         *         a negative integer if this polynomialt is less than the argument
         *         polynomial; and a positive integer if this polynomial is greater than the
         *         argument point
         */
        public int compareTo(Polynomial that) {
            if (this.degree < that.degree) return -1;
            if (this.degree > that.degree) return +1;
            for (int i = this.degree; i >= 0; i--) {
                if (this.coef[i] < that.coef[i]) return -1;
                if (this.coef[i] > that.coef[i]) return +1;
            }
            return 0;
        }
    
        /**
         * Return a string representation of this polynomial.
         * @return a string representation of this polynomial in the format
         *         4x^5 - 3x^2 + 11x + 5
         */
        @Override
        public String toString() {
            if      (degree == -1) return "0";
            else if (degree ==  0) return "" + coef[0];
            else if (degree ==  1) return coef[1] + "x + " + coef[0];
            String s = coef[degree] + "x^" + degree;
            for (int i = degree - 1; i >= 0; i--) {
                if      (coef[i] == 0) continue;
                else if (coef[i]  > 0) s = s + " + " + (coef[i]);
                else if (coef[i]  < 0) s = s + " - " + (-coef[i]);
                if      (i == 1) s = s + "x";
                else if (i >  1) s = s + "x^" + i;
            }
            return s;
        }
    
        /**
         * Unit tests the polynomial data type.
         *
         * @param args the command-line arguments (none)
         */
        public static void main(String[] args) { 
            Polynomial zero = new Polynomial(0, 0);
    
            Polynomial p1   = new Polynomial(4, 3);
            Polynomial p2   = new Polynomial(3, 2);
            Polynomial p3   = new Polynomial(1, 0);
            Polynomial p4   = new Polynomial(2, 1);
            Polynomial p    = p1.plus(p2).plus(p3).plus(p4);   // 4x^3 + 3x^2 + 1
    
            Polynomial q1   = new Polynomial(3, 2);
            Polynomial q2   = new Polynomial(5, 0);
            Polynomial q    = q1.plus(q2);                     // 3x^2 + 5
    
    
            Polynomial r    = p.plus(q);
            Polynomial s    = p.times(q);
            Polynomial t    = p.compose(q);
            Polynomial u    = p.minus(p);
    
            StdOut.println("zero(x)     = " + zero);
            StdOut.println("p(x)        = " + p);
            StdOut.println("q(x)        = " + q);
            StdOut.println("p(x) + q(x) = " + r);
            StdOut.println("p(x) * q(x) = " + s);
            StdOut.println("p(q(x))     = " + t);
            StdOut.println("p(x) - p(x) = " + u);
            StdOut.println("0 - p(x)    = " + zero.minus(p));
            StdOut.println("p(3)        = " + p.evaluate(3));
            StdOut.println("p'(x)       = " + p.differentiate());
            StdOut.println("p''(x)      = " + p.differentiate().differentiate());
        }
    }
    
    /******************************************************************************
     *  Copyright 2002-2018, Robert Sedgewick and Kevin Wayne.
     *
     *  This file is part of algs4.jar, which accompanies the textbook
     *
     *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
     *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
     *      http://algs4.cs.princeton.edu
     *
     *
     *  algs4.jar is free software: you can redistribute it and/or modify
     *  it under the terms of the GNU General Public License as published by
     *  the Free Software Foundation, either version 3 of the License, or
     *  (at your option) any later version.
     *
     *  algs4.jar is distributed in the hope that it will be useful,
     *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     *  GNU General Public License for more details.
     *
     *  You should have received a copy of the GNU General Public License
     *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
     ******************************************************************************/

  • 相关阅读:
    SpringBoot的启动Banner定制 IT
    idea重启 IT
    IDEA快捷键总结 IT
    java8的List排序 IT
    树数据处理
    antd 默认展开的三种实现方式
    antd input placeholder颜色样式修改
    react ref 用法案例
    audtomake
    yocto相关
  • 原文地址:https://www.cnblogs.com/mrcharles/p/11879770.html
Copyright © 2020-2023  润新知