题目
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 <= N <= 100,000) on a number line and the cow is at a point K (0 <= K <= 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting. * Walking: FJ can move from any point X to the points X-1 or X+1 in a single minute * Teleporting: FJ can move from any point X to the point 2*X in a single minute. If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
农夫约翰被通知,他的一只奶牛逃逸了!所以他决定,马上幽发,尽快把那只奶牛抓回来,他们都站在数轴上.约翰在N(O≤N≤100000)处,奶牛在K(O≤K≤100000)处.约翰有两种办法移动,步行和瞬移:步行每秒种可以让约翰从x处走到x+1或x-1处;而瞬移则可让他在1秒内从x处消失,在2x处出现.然而那只逃逸的奶牛,悲剧地没有发现自己的处境多么糟糕,正站在那儿一动不动.那么,约翰需要多少时间抓住那只牛呢?
Input
Line 1: Two space-separated integers: N and K
仅有两个整数N和K.
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
最短的时间.
Sample Input
5 17
Farmer John starts at point 5 and the fugitive cow is at point 17.
Sample Output
4
The fastest way for Farmer John to reach the fugitive cow is to
move along the following path: 5-10-9-18-17, which takes 4 minutes.
思路
这道题依然是一个BFS,可以拓展三种状态:-1,+1或*2,但是要添加一些判断使得不会让标记数组越界导致RE(我死了很多次!!!)
其他的就是模板了…
代码
1 #include<bits/stdc++.h> 2 using namespace std; 3 int n,k; 4 bool vis[10000010]; 5 struct node 6 { 7 int x,s; 8 }; 9 void bfs() 10 { 11 queue<node> q; 12 vis[n]=1; 13 int tx; 14 q.push((node){n,0}); 15 while(!q.empty()) 16 { 17 node now=q.front(); 18 //q.pop(); 19 if(now.x==k) 20 { 21 cout<<now.s<<endl; 22 exit(0); 23 } 24 tx=now.x-1; 25 if(tx>=0) 26 if(!vis[tx]) 27 { 28 q.push((node){tx,now.s+1}); 29 } 30 if(tx>2*k)continue; 31 tx=now.x+1; 32 if(!vis[tx]) 33 { 34 q.push((node){tx,now.s+1}); 35 vis[tx]=1; 36 } 37 tx=now.x*2; 38 if(!vis[tx]) 39 { 40 q.push((node){tx,now.s+1}); 41 vis[tx]=1; 42 } 43 } 44 } 45 int main() 46 { 47 cin>>n>>k; 48 bfs(); 49 cout<<"这组数据无解"<<endl;//打着玩的 50 return 0; 51 }