一.问题切入
调用spark 程序的时候,在获取数据库连接的时候总是报 内存溢出 错误
(在ideal上运行的时候设置jvm参数 -Xms512m -Xmx1024m -XX:PermSize=512m -XX:MaxPermSize=1024M,不会报错)
二.jvm参数 和 saprk 参数 和内存四区 解读
1.内存四区
1、栈区(stack):由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回 收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。
3、数据区:主要包括静态全局区和常量区,如果要站在汇编角度细分的话还可以分为很多小的区。
全局区(静态区)(static):全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的 另一块区域。 程序结束后有系统释放
常量区:常量字符串就是放在这里的。 程序结束后由系统释放
4、代码区:存放函数体的二进制代码。
参考: http://blog.csdn.net/wu5215080/article/details/38899259
2.jvm 参数
-Xms512m -Xmx1024m-XX:PermSize=512m -XX:MaxPermSize=1024M
-Xms JVM初始分配的堆内存 默认是设备物理内存的 1/64
-Xmx JVM最大允许分配的堆内存,按需分配 默认是设备物理内存的 1/4
-XX:PermSize JVM初始分配的非堆内存 默认是设备物理内存的 1/64
-XX:MaxPermSize JVM最大允许分配的非堆内存 默认是设备物理内存的 1/4
参考: http://www.cnblogs.com/mingforyou/archive/2012/03/03/2378143.html
3.spark参数
-- driver-memory : driver运行的内存大小,默认1G driver:sparkcontext ,sqlContext等运行的地方, sparkcontext ,sqlContext 一般运行在栈内存
-- executor-memory : executor的内存大小,默认1G executor: rdd 等运行的地方 ,rdd 一般运行在栈内存
conf spark.storage.memoryFraction=0.3 spark用于缓存rdd的内存百分比(剩下的内存用来保证任务运行时各种其它内存空间的需要),默认0.6(和运行在堆或栈没有关系)
得出:
栈内存 正比于 driver-memory : 内存被 sparkcontext,sqlContext 等固定占用,和数据库连接没有多大关系
栈内存 正比于 executor-memory ; executor-memory 分两种: rdd 和其他(包含获取获取 数据库连接的内存)
三.问题分析和解决
方向:增大executor-memory 和减小 conf spark.storage.memoryFraction 的值 ,根据具体环境而定
命令方式:
nohup spark-submit
--masteryarn
--executor-memory 1024M
--confspark.storage.memoryFraction=0.3
--classcom.xiaopeng.bi.gamepublish.GamePublishKpi
/home/hduser/projs/xiaopeng_bi.jar60 >> /home/hduser/projs/logs/gamepublishkpi.log &
代码方式:
val sparkConf = newSparkConf().setAppName(this.getClass.getName.replace("$",""))
.set("spark.default.parallelism", "60") // 1. 调节并行度
.set("spark.serializer","org.apache.spark.serializer.KryoSerializer") // 3.序列化方式
.set("spark.shuffle.consolidateFiles", "true")// 4. shuffle 过程中 合并小文件
.set("spark.storage.memoryFraction", "0.4");// 5.cache占用的内存占比
.set("spark.sql.shuffle.partitions", "60")// 6.shuffle 时 partion的个数
---------------------
作者:kequanjade
原文:https://blog.csdn.net/keyuquan/article/details/72629605