原题地址:https://vjudge.net/problem/ZOJ-3329
题目大意:
有三个骰子,分别有k1,k2,k3个面,初始分数是0。第i骰子上的分数从1道ki。当掷三个骰子的点数分别为a,b,c的时候,分数清零,否则分数加上三个骰子的点数和,当分数>n的时候结束。求需要掷骰子的次数的期望。
(0<=n<= 500,1<K1,K2,K3<=6,1<=a<=K1,1<=b<=K2,1<=c<=K3)
思路:
如果设当前分数为 i ,且再有 dp[ i ] 次投掷可以达到分数 n
设该次投出的点数为 k
那么容易写出状态转移方程 dp[ i ] = ∑ ( dp[ i+k ] * p[ k ] ) + dp[ 0 ] * p[ 0 ] + 1
因为从当前状态开始,再投一次( 这就是式子中 +1 的由来 ) 可能到达的分数有 k 种,概率分别为 p[ 1 ] 到 p[ k ] (当然, p[ 1 ] , p [ 2 ]已被初始化为 0 .
除此之外 ,也可能投出 k1=a,k2=b,k3=c 的组合,因此要加上 dp[ 0 ] * p[ 0 ] 这一项 .
至此,我们得到了转移方程
但是,经过观察我们可以发现它实际上是不能用的
大凡可以使用的方程,必定是从一个方向推向另一个方向,要么从小到大(正推) ,要么从大到小(逆推)
但是这个方程中,右边的项同时包含了比 i 大的( dp[ i+k ] ) 和比 i 小的( dp[ 0 ] )
这就使dp 陷入一个自身依赖自身的环中
一般遇到这种情况,我们会采取高斯消元法解方程来解决
但因为博主太菜了,还不会(会补的,会补的......)
同时,这道题中阻碍我们进行 dp 的只有 dp[ 0 ] 这一项
因此我们采取将 dp[ 0 ] 设为未知数的方法
注意到,每个 dp[ i ] 都含有相同的元素 dp[ 0 ]
则 dp[ i ] 是 dp [ 0 ] 的一个线性组合( 因为没有出现 dp[ 0 ] 的高次幂)
因此可以将转移方程写成 dp[ i ] = dp[ 0 ] * a[ i ]+b[ i ] ············( 1 )
于是就有 dp[ i+k ] = dp[0] * a[ i+k ]+b[ i+k ]
把这个式子带入原来的转移方程得到 dp[ i ] = dp[ 0 ] * p[ 0 ] + ∑( dp[ i+k ] * p[ i+k ] ) + 1
再将这个式子中的 dp[ 0 ] 分离出来,化成与式 ( 1 ) 相同的形式 dp[ i ] = dp[ 0 ] * ( ∑ ( a[ i+k ] * p[ i+k ] ) + p[ 0 ] ) + ( ∑( b[ i+k ] * p[ i+k ] ) + 1 )
我们把( 1 )式拉下来,让你看得更清楚: dp[ i ] = dp[0] * a[ i ] + b[ i ]
因此,我们得到了新的,关于 a,b 的方程:
a[ i ] = ∑ ( a[ i+k ] * p[ i+k ] ) + p[ 0 ]
b[ i ] =∑ ( b[ i+k ] * p[ i+k ] ) + 1
我们惊喜地发现,这是两个状态转移方程!
我们可以通过逆推得到 a[ 0 ] 和 b[ 0 ]
还记得式(1)吗?如果我们把它的 i 取成 0 ,就得到:
dp[ 0 ] = dp[ 0 ] * a[ 0 ]+b[ 0 ]
我们终于能够解出 dp[ 0 ]
而这也正是本题的答案
下边附上kuagnbin 大大的代码:
·
#include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> using namespace std; double A[600],B[600]; double p[100]; int main() { int T; int k1,k2,k3,a,b,c; int n; scanf("%d",&T); while(T--) { scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c); double p0=1.0/k1/k2/k3; memset(p,0,sizeof(p)); for(int i=1;i<=k1;i++) for(int j=1;j<=k2;j++) for(int k=1;k<=k3;k++) if(i!=a||j!=b||k!=c) p[i+j+k]+=p0; memset(A,0,sizeof(A)); memset(B,0,sizeof(B)); for(int i=n;i>=0;i--) { A[i]=p0;B[i]=1; for(int j=1;j<=k1+k2+k3;j++) { A[i]+=A[i+j]*p[j]; B[i]+=B[i+j]*p[j]; } } printf("%.16lf ",B[0]/(1-A[0])); } return 0; }
博主新手上路,觉得不错的能否赏个赞或关注?
觉得有写得不好的地方也欢迎大家指正,我会及时修改!