参考链接地址:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/
1、TensorFlow 基础架构
TensorFlow是采用数据流图(data flow graphs)来计算, 所以首先我们得创建一个数据流流图, 然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算. 节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组, 即张量(tensor). 训练模型时tensor会不断的从数据流图中的一个节点flow到另一节点, 这就是TensorFlow名字的由来.
2、建造神经网络
2.1 构造添加一个神经层的函数
定义添加神经层的函数 add_layer(),它有四个参数:输入值、输入值大小、输出的大小和激励函数,我们设定默认的激励函数为None。
2.2 构造神经网络并可视化训练
2.3 优化器optimizer
Tensorflow中的优化器会有很多不同的种类。最基本,也是最常用的一种就是GradientDescentOptimizer。在Google搜索输入“tensorflow optimizer”可以看到Tensorflow提供的7种优化器。
3、Tensorboard 可视化好帮手
Step1 绘制图层与其中的参数
对输入层、隐藏层、loss函数、train_step进行图层
A 主要用到两个语法:
- 定义图层:with tf.name_scope() (里面写名字,下面用缩进)
- 定义参数:增加参数变量的属性name
B 保存并执行绘图:
1 保存绘画:tf.summary.FileWriter() 运行程序,生成绘画文件
2 运行绘画1:在CMD中tensorboard --logdir logs设定文件目录
3 打开Google Chrome:http://localhost:6006
Step2 可视化训练过程
1 Distributions——tf.summary.histogram()
制作对Weights 和 biases的变化图标 distributions
Tensorflow中提供了tf.summary.histogram()方法,用来绘制图片,第一个参数是图表的名称,第二个参数是图表要记录的变量
2 Events——tf.summary.scalar()
Loss的变化图和之前设置的方法略有不同。Loss是在tensorboard 的event 下面的,这是由于我们使用的是tf.summary.scalar()方法。
观看loss的变化比较重要. 当你的loss呈下降的趋势,说明你的神经网络训练是有效果的。
Step3 给所有训练图‘合并’——tf.summary.merged_all()
接下来, 开始合并打包。 tf.summary.merge_all() 方法会对我们所有的 summaries 合并到一起
Step4 训练数据
以上这些仅仅可以记录很绘制出训练的图表, 但是不会记录训练的数据。 为了较为直观显示训练过程中每个参数的变化,我们每隔上50次就记录一次结果 , 同时我们也应注意, merged 也是需要run 才能发挥作用的。
4、Classification 分类学习
Step1 首先准备数据库(MNIST)
Step2 构建网络类型
Step3 建立loss函数
Step4 train方法
Step5 train并输出结果
Summary 完整代码
5、dropout 理解dropout是什么
6、什么是CNN神经网络
定义weights(shape)、bias(shape)、conv2d(x, W)、max_pool_2x2(x)
7、搭建CNN神经网络——添加神经层
conv1 layer、conv2 layer、func1 layer、func2 layer
8、保存和读取
——tf.train.Saver()
python代码如下:
####################### lesson 1 开始 ########################### #import tensorflow as tf #import numpy as np # #x_data = np.random.rand(100).astype(np.float32) #y_data = x_data*0.1 + 0.3 # #Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0)) #biases = tf.Variable(tf.zeros([1])) # #y = Weights * x_data + biases # #loss = tf.reduce_mean(tf.square(y-y_data)) # #optimizer = tf.train.GradientDescentOptimizer(0.5) #train = optimizer.minimize(loss) # #init = tf.global_variables_initializer() # #sess = tf.Session() #sess.run(init) # #for step in range(200): # sess.run(train) # if step % 20 == 0: # print(step,sess.run(Weights), sess.run(biases)) ####################### lesson 1 结束 ########################### ####################### lesson 2 Session 开始 ########################### #import tensorflow as tf # #matrix1 = tf.constant([[3, 2]]) #matrix2 = tf.constant([[2], # [2]]) # #product = tf.matmul(matrix1, matrix2) # ##method 1 #sess = tf.Session() #result1 = sess.run(product) #sess.close() #print(result1) # # ##method 2 #with tf.Session() as sess: # result2 = sess.run(product) #print(result2) ####################### lesson 2 Session 结束 ########################### ####################### lesson 3 Variable 开始 ########################### #import tensorflow as tf # #state = tf.Variable(0, name = "counter") #one = tf.constant(1) # #new_value = tf.add(state, one) # #update = tf.assign(state, new_value) # #init = tf.global_variables_initializer() # #with tf.Session() as sess: # sess.run(init) # for _ in range(4): # sess.run(update) # print(sess.run(state)) # ## 注意 直接写print(state) 不起作用!! ##1 ##2 ##3 ##4 ####################### lesson 3 Variable 结束 ########################### ####################### lesson 4 placeholder - feed_dict 开始 ########################### #import tensorflow as tf # #input1 = tf.placeholder(tf.float32) #input2 = tf.placeholder(tf.float32) # #output = tf.multiply(input1, input2) # #with tf.Session() as sess: # print(sess.run(output, feed_dict= {input1:[2.], input2:[4.]})) ####################### lesson 4 placeholder - feed_dict 开始 ########################### ####################### lesson 5 Activation Function 开始 ########################### #激励函数运行时激活神经网络中某一部分神经元,将激活信息向后传入下一层的神经系统。激励函数的实质是非线性方程。 #Tensorflow 的神经网络里面处理较为复杂的问题时都会需要运用激励函数 activation function 。 ####################### lesson 5 Activation Function 结束 ########################### ####################### lesson 6 add_layer 开始 ########################### #import tensorflow as tf # #def add_layer(inputs, in_size, out_size, activation_function= None): # # Weights = tf.Variable(tf.random_normal([in_size, out_size])) # baises = tf.Variable(tf.zeros([1, out_size]) + 0.1) # # Wx_plus_b = tf.matmul(inputs, Weights) + baises # # if not activation_function: # if activation_function is None: # output = Wx_plus_b # else: # output = activation_function(Wx_plus_b) # # return output ####################### lesson 6 add_layer 结束 ########################### ####################### lesson 7 create_NN 开始 ########################### #import tensorflow as tf #import numpy as np # #def add_layer(inputs, in_size, out_size, activation_function= None): # # Weights = tf.Variable(tf.random_normal([in_size, out_size])) # baises = tf.Variable(tf.zeros([1, out_size]) + 0.1) # Wx_plus_b = tf.matmul(inputs, Weights) + baises # if not activation_function: # if activation_function is None: # output = Wx_plus_b # else: # output = activation_function(Wx_plus_b) # # return output # #x_data = np.linspace(-1, 1, 300)[:,np.newaxis] #noise = np.random.normal(0, 0.05, x_data.shape) #y_data = np.square(x_data) - 0.5 + noise # #xs = tf.placeholder(tf.float32, [None, 1]) #ys = tf.placeholder(tf.float32, [None, 1]) # #l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu) #prediction = add_layer(l1, 10, 1, activation_function = None) # #loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1])) # #train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # #init = tf.global_variables_initializer() #sess = tf.Session() #sess.run(init) # #for step in range(1000): # sess.run(train_step, feed_dict = {xs:x_data, ys:y_data}) # if step % 50 == 0: # print(step, sess.run(loss, feed_dict = {xs:x_data, ys:y_data})) ####################### lesson 7 create_NN 结束 ########################### ####################### lesson 8 create_NN and visulable 开始 ########################### # #import tensorflow as tf #import numpy as np #import matplotlib.pyplot as plt # #def add_layer(inputs, in_size, out_size, activation_function= None): # # Weights = tf.Variable(tf.random_normal([in_size, out_size])) # baises = tf.Variable(tf.zeros([1, out_size]) + 0.1) # Wx_plus_b = tf.matmul(inputs, Weights) + baises # if not activation_function: # if activation_function is None: # output = Wx_plus_b # else: # output = activation_function(Wx_plus_b) # # return output # #x_data = np.linspace(-1, 1, 300)[:,np.newaxis] #noise = np.random.normal(0, 0.05, x_data.shape) #y_data = np.square(x_data) - 0.5 + noise # #xs = tf.placeholder(tf.float32, [None, 1]) #ys = tf.placeholder(tf.float32, [None, 1]) # #l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu) #prediction = add_layer(l1, 10, 1, activation_function = None) # #loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1])) # #train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # #init = tf.global_variables_initializer() #sess = tf.Session() #sess.run(init) # # #fig = plt.figure() #ax = fig.add_subplot(1,1,1) #ax.scatter(x_data, y_data) #plt.ion() ##plt.show(block=False) # #for step in range(1000): # sess.run(train_step, feed_dict = {xs:x_data, ys:y_data}) ## try: ## ax.lines.remove(lines[0]) ## except Exception: ## pass # if step % 50 == 0: ## print(step, sessS.run(loss, feed_dict = {xs:x_data})) # prediction_value = sess.run(prediction, feed_dict = {xs:x_data}) # lines = ax.plot(x_data, prediction_value, '-r', lw=3) # plt.pause(0.1) # ax.lines.remove(lines[0]) ####################### lesson 8 create_NN and visulable 结束 ########################### ####################### lesson 9 tensorboard_structure 开始 ########################### # # #import tensorflow as tf #import numpy as np #import matplotlib.pyplot as plt # # #def add_layer(inputs, in_size, out_size, activation_function=None): # with tf.name_scope('layer'): # with tf.name_scope('weights'): # Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W') # with tf.name_scope('biases'): # biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b') # with tf.name_scope('Wx_plus_b'): # Wx_plus_b = tf.matmul(inputs, Weights) + biases # # if not activation_function: # outputs = Wx_plus_b # else: # outputs = activation_function(Wx_plus_b) # return outputs # # #x_data = np.linspace(-1, 1, 300, dtype=np.float32)[:, np.newaxis] # [:, np.newaxis] 转换成列向量 #noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32) #y_data = np.square(x_data) - 0.5 + noise # #with tf.name_scope('inputs'): # xs = tf.placeholder(tf.float32, shape=[None, 1], name = 'x_input') # ys = tf.placeholder(tf.float32, shape=[None, 1], name = 'y_input') # #l1 = add_layer(xs, 1, 10, activation_function=tf.nn.sigmoid) # #prediction = add_layer(l1, 10, 1, activation_function=None) # #with tf.name_scope('loss'): # loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]), name='loss') # #with tf.name_scope('train'): # train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # #sess = tf.Session() #writer = tf.summary.FileWriter("logs/", sess.graph) ## 初始化 tensorflow 变量,并用会话激活 #init = tf.global_variables_initializer() #sess.run(init) ####################### lesson 9 tensorboard_structure 结束 ########################### ####################### lesson 10 tensorboard_training 开始 ########################### #import tensorflow as tf #import numpy as np #import matplotlib.pyplot as plt # ## 定义一个方法,用于构建神经层 #def add_layer(inputs , # in_size, # out_size,n_layer, # activation_function=None): # ## add one more layer and return the output of this layer # layer_name='layer%s'%n_layer # with tf.name_scope('layer'): # with tf.name_scope('weights'): # Weights = tf.Variable(tf.random_normal([in_size, out_size]),name='W') # # tf.histogram_summary(layer_name+'/weights',Weights) # tf.summary.histogram(layer_name + '/weights', Weights) # tensorflow >= 0.12 # # with tf.name_scope('biases'): # biases = tf.Variable(tf.zeros([1,out_size])+0.1, name='b') # # tf.histogram_summary(layer_name+'/biase',biases) # tf.summary.histogram(layer_name + '/biases', biases) # Tensorflow >= 0.12 # # with tf.name_scope('Wx_plus_b'): # Wx_plus_b = tf.add(tf.matmul(inputs,Weights), biases) # # if activation_function is None: # outputs=Wx_plus_b # else: # outputs= activation_function(Wx_plus_b) # # # tf.histogram_summary(layer_name+'/outputs',outputs) # tf.summary.histogram(layer_name + '/outputs', outputs) # Tensorflow >= 0.12 # # return outputs # ## 主体方法 ## 构建所需的数据. 这里的x_data 和y_data 并不是严格的一元二次函数的关系#,因为我们在这里加了一个noise,这样看起来更真实 #x_data = np.linspace(-1, 1, 300, dtype=np.float32)[:, np.newaxis] #noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32) #y_data = np.square(x_data) - 0.5 + noise # ## 数据可视化,用散点图画出真实数据 #fig = plt.figure() #ax = fig.add_subplot(1,1,1) # 连续性画图,需要用到add_subplot(编号) #ax.scatter(x_data, y_data) # 获取点 #plt.ion() # plt原本会暂停程序,加上这句就不会暂停了 ## plt.show(block = False) # ## 定义输入占位符 ## 利用占位符tf.placeholder()定义我们所需的神经网络的输入.这里的None代表无论输入有多少都可以,因为输入只有一个特征,所有这里是1. #with tf.name_scope('inputs'): # xs = tf.placeholder(tf.float32, shape=[None, 1], name= 'x_input') # ys = tf.placeholder(tf.float32, shape=[None, 1], name= 'y_input') # ## 默认一个输入(维度1),定义一个隐藏层,一个输出层 ## l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu) #l1 = add_layer(xs, 1, 10, n_layer=1, activation_function = tf.nn.relu) ## 增加输出层 #prediction = add_layer(l1, 10, 1,n_layer=2, activation_function = None) ## 定义误差函数 #with tf.name_scope('loss'): # loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]), name= 'loss') # tf.summary.scalar('loss', loss) # tensorflow >= 0.12 # ## 选取梯度下降优化器进行训练, 很关键的一步,如何让机器学习提升它的准确率 ## tf.train.GradientDescentOptimizer()中的值通常都小于1,这里取的是0.1,代表以0.1的效率来最小化误差loss ## optimizer = tf.train.GradientDescentOptimizer(0.1) ## train_step = optimizer.minimize(loss) #with tf.name_scope('train'): # train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # ## 定义会话控制Session #sess = tf.Session() # ## 开始合并打包 #merged = tf.summary.merge_all() # #writer = tf.summary.FileWriter('logs/', sess.graph) # ## 初始化 tensorflow 变量,并用会话激活 #init = tf.global_variables_initializer() #sess.run(init) # ## 开始训练 #for step in range(1000): # sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) # if step % 50 ==0: # rs = sess.run(merged, feed_dict= {xs: x_data, ys: y_data}) # writer.add_summary(rs, step) ####################### lesson 10 tensorboard_training 结束 ########################### ####################### lesson 10 classification 开始 ########################### #import tensorflow as tf #from tensorflow.examples.tutorials.mnist import input_data # ## 添加层的方法 #def add_layer(inputs, in_size, out_size, n_layer, activation_function=None): # layer_name = 'layer%s' %(n_layer) # Weights = tf.Variable(tf.random_normal([in_size, out_size])) # biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, ) # Wx_plus_b = tf.matmul(inputs, Weights) + biases # if activation_function == 0: # outputs = Wx_plus_b # else: # outputs = activation_function(Wx_plus_b) # return outputs # ## 计算精确度的方法 #def compute_accuracy(v_xs, v_ys): # global prediction # y_pre = sess.run(prediction, feed_dict={xs: v_xs}) # correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1)) # accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys}) # return result # ## 装载数据 #mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # ## 定义输入占位符 #xs = tf.placeholder(tf.float32, [None, 784]) #ys = tf.placeholder(tf.float32, [None, 10]) # ## 神经网络结构,一层 #prediction = add_layer(xs, 784, 10, n_layer=1, activation_function=tf.nn.softmax) # ## loss函数 #cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) # ## 训练方法 sgd #train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) # ## 定义会话控制 #sess = tf.Session() # ## 激活变量 #init = tf.global_variables_initializer() #sess.run(init) # ## 开始训练 #for step in range(1000): # batch_xs, batch_ys = mnist.train.next_batch(100) # sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys}) # if step % 50 == 0: # print(compute_accuracy(mnist.test.images, mnist.test.labels)) ####################### lesson 10 classification 结束 ########################### ####################### lesson 11 dropout 开始 ########################### #import tensorflow as tf #from sklearn.datasets import load_digits #from sklearn.model_selection import train_test_split #from sklearn.preprocessing import LabelBinarizer # ## load data #digits = load_digits() #X = digits.data # 载入0——9的数字图片 #y = digits.target #y = LabelBinarizer().fit_transform(y) # 将y变成binary #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3) # 分成训练集和测试集, test_size= .3 代表测试数据集占总数据集的比例为0.3 # # #def add_layer(inputs, in_size, out_size, layer_name, activation_function=None, ): # # add one more layer and return the output of this layer # Weights = tf.Variable(tf.random_normal([in_size, out_size])) # biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, ) # Wx_plus_b = tf.matmul(inputs, Weights) + biases # Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob) # if activation_function is None: # outputs = Wx_plus_b # else: # outputs = activation_function(Wx_plus_b, ) # tf.summary.histogram(layer_name + '/outputs', outputs) # 观察outputs的histogram数据 # return outputs # # ## define placeholder for inputs to network #keep_prob = tf.placeholder(tf.float32) # 定义 dropout 的值, 保持的可能性 #xs = tf.placeholder(tf.float32, [None, 64]) # 8x8 x_data 的数据为 64位 #ys = tf.placeholder(tf.float32, [None, 10]) # 输出数据 为 10 位 # ## add output layer #l1 = add_layer(xs, 64, 100, 'l1', activation_function=tf.nn.tanh) # 第一层(输入层和隐藏层)的inputs=xs,in_size=64,out_size=100,激励函数为tanh #prediction = add_layer(l1, 100, 10, 'l2', activation_function=tf.nn.softmax) # 第二层(隐藏层和输出层)的inputs=l1,in_size=100,out_size=10,激励函数为softmax ## the loss between prediction and real data #cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), # reduction_indices=[1])) # loss #tf.summary.scalar('loss', cross_entropy) # 用tensorboard中的event 观察 loss 的损失情况 #train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) # #sess = tf.Session() #merged = tf.summary.merge_all() ## summary writer goes in here #train_writer = tf.summary.FileWriter("logs/train", sess.graph) #test_writer = tf.summary.FileWriter("logs/test", sess.graph) # #sess.run(tf.global_variables_initializer()) # #for i in range(500): # sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: 0.4}) # if i % 50 == 0: # # record loss # train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train, keep_prob: 1}) # test_result = sess.run(merged, feed_dict = {xs: X_train, ys: y_train, keep_prob: 1}) # train_writer.add_summary(train_result) # test_writer.add_summary(test_result) ####################### lesson 11 dropout 结束 ########################### ####################### lesson 12 tf-18 CNN_1 开始 ########################### #import tensorflow as tf #from tensorflow.examples.tutorials.mnist import input_data ## number 1 to 10 data #mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # #def compute_accuracy(v_xs, v_ys): # global prediction # y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1}) # correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1)) # accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1}) # return result # #def weight_variable(shape): # initial = tf.truncated_normal(shape, stddev= 0.1) # return tf.Variable(initial) # #def bias_variable(shape): # initial = tf.constant(0.1, shape=shape) # return tf.Variable(initial) # #def conv2d(x, W): # return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME') # #def max_pool_2x2(x): # return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') # ## define placeholder for inputs to network #xs = tf.placeholder(tf.float32, [None, 784]) # 28x28 #ys = tf.placeholder(tf.float32, [None, 10]) #keep_prob = tf.placeholder(tf.float32) # ### conv1 layer ## ### conv2 layer ## ### func1 layer ## ### func2 layer ## # ## the error between prediction and real data #cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), # reduction_indices=[1])) # loss #train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # #sess = tf.Session() ## important step #sess.run(tf.initialize_all_variables()) # #for i in range(1000): # batch_xs, batch_ys = mnist.train.next_batch(100) # sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5}) # if i % 50 == 0: # print(compute_accuracy( # mnist.test.images, mnist.test.labels)) ####################### lesson 12 tf-18 CNN_1 结束 ########################### ####################### lesson 13 tf-19 CNN_2 开始 ########################### #import tensorflow as tf #from tensorflow.examples.tutorials.mnist import input_data ## number 1 to 10 data #mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # #def compute_accuracy(v_xs, v_ys): # global prediction # y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1}) # correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1)) # accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1}) # return result # #def weight_variable(shape): # initial = tf.truncated_normal(shape, stddev= 0.1) # return tf.Variable(initial) # #def bias_variable(shape): # initial = tf.constant(0.1, shape=shape) # return tf.Variable(initial) # #def conv2d(x, W): # return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME') # #def max_pool_2x2(x): # return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') # ## define placeholder for inputs to network #xs = tf.placeholder(tf.float32, [None, 784]) # 28x28 #ys = tf.placeholder(tf.float32, [None, 10]) #keep_prob = tf.placeholder(tf.float32) #x_image = tf.reshape(xs, [-1,28,28,1]) # ### conv1 layer ## #W_conv1 = weight_variable([5,5, 1,32]) #b_conv1 = bias_variable([32]) #h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #h_pool1 = max_pool_2x2(h_conv1) # ### conv2 layer ## #W_conv2 = weight_variable([5,5, 32,64]) #b_conv2 = bias_variable([64]) #h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #h_pool2 = max_pool_2x2(h_conv2) ### func1 layer ## #W_fc1 = weight_variable([7*7*64, 1024]) #b_fc1 = weight_variable([1024]) #h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) ### func2 layer ## #W_fc2 = weight_variable([1024, 10]) #b_fc2 = weight_variable([10]) #prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) ## the error between prediction and real data #cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), # reduction_indices=[1])) # loss #train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # #sess = tf.Session() ## important step #sess.run(tf.tf.global_variables_initializer()) # #for i in range(1000): # batch_xs, batch_ys = mnist.train.next_batch(100) # sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5}) # if i % 50 == 0: # print(compute_accuracy( # mnist.test.images, mnist.test.labels)) ####################### lesson 13 tf-19 CNN_2 结束 ########################### ####################### lesson 14 tensorflow-saver.save_保存 开始 ########################### #import tensorflow as tf # ## Save to file ## remember to define the same dtype and shape when restore #W = tf.Variable([[1,2,3],[3,4,5]], dtype=tf.float32, name="weights") #b = tf.Variable([[1,2,3], dtype= tf.float32, name="biases"]) # #init = tf.global_variables_initializer() # #saver = tf.train.Saver() # #with tf.Session as sess: # sess.run(init) # save_path = saver.save(sess, "my_net/save_net.ckpt") # print("Save to path:", save_path) ####################### lesson 14 tensorflow-saver.save_保存 结束 ########################### ####################### lesson 15 tensorflow-saver.restore_提取 开始 ########################### import tensorflow as tf import numpy as np # restore variables # redefine the same shape and same type for your variables W = tf.Variable(np.arange(6).reshape((2,3)), dtype= tf.float32, name="weights") b = tf.Variable(np.arange(3).reshape((1,3)), dtype= tf.float32, name="biases") # not define init saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, "my_net/save_net.ckpt") print("weights:", sess.run(W)) print("biases:", sess.run(b)) ####################### lesson 15 tensorflow-saver.restore_提取 结束 ###########################