• POJ 3041 Asteroids (二分图最小点覆盖集)


    Asteroids

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 24789   Accepted: 13439

    Description

    Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N grid (1 <= N <= 500). The grid contains K asteroids (1 <= K <= 10,000), which are conveniently located at the lattice points of the grid. 

    Fortunately, Bessie has a powerful weapon that can vaporize all the asteroids in any given row or column of the grid with a single shot.This weapon is quite expensive, so she wishes to use it sparingly.Given the location of all the asteroids in the field, find the minimum number of shots Bessie needs to fire to eliminate all of the asteroids.

    Input

    * Line 1: Two integers N and K, separated by a single space. 
    * Lines 2..K+1: Each line contains two space-separated integers R and C (1 <= R, C <= N) denoting the row and column coordinates of an asteroid, respectively.

    Output

    * Line 1: The integer representing the minimum number of times Bessie must shoot.

    Sample Input

    3 4
    1 1
    1 3
    2 2
    3 2
    

    Sample Output

    2
    

    Hint

    INPUT DETAILS: 
    The following diagram represents the data, where "X" is an asteroid and "." is empty space: 
    X.X 
    .X. 
    .X.
     

    OUTPUT DETAILS: 
    Bessie may fire across row 1 to destroy the asteroids at (1,1) and (1,3), and then she may fire down column 2 to destroy the asteroids at (2,2) and (3,2).

     

    题意

    一个n*n的网格,每个网格中有一些点,每次可以消灭一行或者一列的点,求最少的次数消灭所有的点。

    分析

    这是一个二分图,行和列分别是两个集合。求最少点覆盖集。

    结论:最小点覆盖集=二分图最大匹配数

    建图跑最大流即可。

    建图:S向行连流量为1的边,列向T连流量为1的边,对于每个点(u,v),由u向v连流量为1的边

    code

     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<cstring>
     4 
     5 using namespace std;
     6 const int N = 1010;
     7 const int INF = 1e9;
     8 struct Edge{
     9     int to,nxt,c;
    10     Edge() {}
    11     Edge(int x,int y,int z) {to = x,c = y,nxt = z;}
    12 }e[1000100];
    13 int q[1000100],L,R,S,T,tot = 1;
    14 int dis[N],cur[N],head[N];
    15 
    16 inline char nc() {
    17     static char buf[100000],*p1 = buf,*p2 = buf;
    18     return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2) ? EOF :*p1++;
    19 }
    20 inline int read() {
    21     int x = 0,f = 1;char ch=nc();
    22     for (; ch<'0'||ch>'9'; ch=nc()) if(ch=='-')f=-1;
    23     for (; ch>='0'&&ch<='9'; ch=nc()) x=x*10+ch-'0';
    24     return x*f;
    25 }
    26 void add_edge(int u,int v,int c) {
    27     e[++tot] = Edge(v,c,head[u]);head[u] = tot;
    28     e[++tot] = Edge(u,0,head[v]);head[v] = tot;
    29 }
    30 bool bfs() {
    31     for (int i=1; i<=T; ++i) cur[i] = head[i],dis[i] = -1;
    32     L = 1,R = 0;
    33     q[++R] = S;dis[S] = 1;
    34     while (L <= R) {
    35         int u = q[L++];
    36         for (int i=head[u]; i; i=e[i].nxt) {
    37             int v = e[i].to;
    38             if (dis[v] == -1 && e[i].c > 0) {
    39                 dis[v] = dis[u]+1;q[++R] = v;
    40                 if (v==T) return true;
    41             }
    42         }
    43     }
    44     return false;
    45 }
    46 int dfs(int u,int flow) {
    47     if (u==T) return flow;
    48     int used = 0;
    49     for (int &i=cur[u]; i; i=e[i].nxt) {
    50         int v = e[i].to;
    51         if (dis[v] == dis[u] + 1 && e[i].c > 0) {
    52             int tmp = dfs(v,min(flow-used,e[i].c));
    53             if (tmp > 0) {
    54                 e[i].c -= tmp;e[i^1].c += tmp;
    55                 used += tmp;
    56                 if (used == flow) break;
    57             }
    58         }
    59     }
    60     if (used != flow) dis[u] = -1;
    61     return used;
    62 }
    63 int dinic() {
    64     int ret = 0;
    65     while (bfs()) ret += dfs(S,INF);
    66     return ret;
    67 }
    68 
    69 int main() {
    70     int n = read(),m = read();
    71     S = n + n + 1,T = n + n + 2;
    72     for (int i=1; i<=n; ++i) add_edge(S,i,1),add_edge(i+n,T,1);
    73     for (int i=1; i<=m; ++i) {
    74         int u = read(),v = read();
    75         add_edge(u,v+n,1);
    76     }
    77     int ans = dinic();
    78     printf("%d",ans);
    79     return 0;
    80 }
     
  • 相关阅读:
    寫程序方法
    phpDesigner注冊碼
    如何获取SQL Server数据库元数据(转)
    WPF中的事件(Event)
    访问数据源的架构信息(系统表、信息结构图、GetSchema)
    MSbuild生成WPF程序
    数据契约
    window动态调整大小后无法关闭
    sql server 2000 系统表详细介绍(转,收藏一下)
    Linq2Sql:使用Sqlmetal.exe
  • 原文地址:https://www.cnblogs.com/mjtcn/p/8544844.html
Copyright © 2020-2023  润新知