Dropping tests
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 15067 | Accepted: 5263 |
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1 5 0 2 5 1 6 4 2 1 2 7 9 5 6 7 9 0 0
Sample Output
83 100
题意
给出n个二元组$(a_1,b_1)(a_2,b_2)...(a_n,b_n)$,从中选出$(n-k+1)$个二元组,使得选出的这k个二元组$c=frac{a_1+a_2+...+a_k}{b_1+b_2+...+b_k}$最大。
分析
01分数规划。
对于原问题,并不好分析,将问题转化一下,转化成判定性问题。
原题中使得c最大,假设c就是答案,那么有:
$a_1+a_2+...+a_k=c*(b_1+b_2+...+b_k)$
$a_1+a_2+...+a_k=c*b_1+c*b_2+...+c*b_k$
$(a_1-c*b_1)+(a_2-c*b_2)...+(a_k-c*b_k)=0$
所以我们可以二分一个c,判断是否可行。
设新数组$d[i]=a[i]-c*b[i]$,从d数组中挑出$(n-k+1)$最大的数,如果大于等于0,那么c满足,否则不满足。
复杂度$O(nlogn)$
code
1 #include<cstdio> 2 #include<algorithm> 3 4 using namespace std; 5 6 const double eps = 1e-8; 7 double a[1010],b[1010],c[1010]; 8 int n,k; 9 10 bool check(double x) { 11 for (int i=1; i<=n; ++i) 12 c[i] = a[i] - x * b[i]; 13 sort(c+1,c+n+1); 14 double ans = 0.0; 15 for (int i=k+1; i<=n; ++i) ans += c[i]; 16 return ans >= 0.0; 17 } 18 int main() { 19 while (~scanf("%d%d",&n,&k)) { 20 if (n==0 && k==0) break; 21 for (int i=1; i<=n; ++i) scanf("%lf",&a[i]); 22 for (int i=1; i<=n; ++i) scanf("%lf",&b[i]); 23 double L = 0.0,R = 1.0,mid; 24 while (R-L>eps) { 25 mid = (L + R) / 2.0; 26 if (check(mid)) L = mid; 27 else R = mid; 28 } 29 printf("%.0lf ",L*100); 30 } 31 return 0; 32 }