• POJ 2976 Dropping tests(01分数规划)


    Dropping tests

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 15067   Accepted: 5263

    Description

    In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

    .

    Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

    Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

    Input

    The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

    Output

    For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

    Sample Input

    3 1
    5 0 2
    5 1 6
    4 2
    1 2 7 9
    5 6 7 9
    0 0

    Sample Output

    83
    100

    题意

    给出n个二元组$(a_1,b_1)(a_2,b_2)...(a_n,b_n)$,从中选出$(n-k+1)$个二元组,使得选出的这k个二元组$c=frac{a_1+a_2+...+a_k}{b_1+b_2+...+b_k}$最大。

    分析

    01分数规划。

    对于原问题,并不好分析,将问题转化一下,转化成判定性问题。

    原题中使得c最大,假设c就是答案,那么有:

    $a_1+a_2+...+a_k=c*(b_1+b_2+...+b_k)$
    $a_1+a_2+...+a_k=c*b_1+c*b_2+...+c*b_k$
    $(a_1-c*b_1)+(a_2-c*b_2)...+(a_k-c*b_k)=0$

    所以我们可以二分一个c,判断是否可行。

    设新数组$d[i]=a[i]-c*b[i]$,从d数组中挑出$(n-k+1)$最大的数,如果大于等于0,那么c满足,否则不满足。

    复杂度$O(nlogn)$

    code

     1 #include<cstdio>
     2 #include<algorithm>
     3 
     4 using namespace std;
     5 
     6 const double eps = 1e-8;
     7 double a[1010],b[1010],c[1010];
     8 int n,k;
     9 
    10 bool check(double x) {
    11     for (int i=1; i<=n; ++i) 
    12         c[i] = a[i] - x * b[i];
    13     sort(c+1,c+n+1);
    14     double ans = 0.0;
    15     for (int i=k+1; i<=n; ++i) ans += c[i];
    16     return ans >= 0.0;
    17 }
    18 int main() {
    19     while (~scanf("%d%d",&n,&k)) {
    20         if (n==0 && k==0) break;
    21         for (int i=1; i<=n; ++i) scanf("%lf",&a[i]);
    22         for (int i=1; i<=n; ++i) scanf("%lf",&b[i]);
    23         double L = 0.0,R = 1.0,mid;
    24         while (R-L>eps) {
    25             mid = (L + R) / 2.0;
    26             if (check(mid)) L = mid;
    27             else R = mid;
    28         }
    29         printf("%.0lf
    ",L*100);
    30     }
    31     return 0;
    32 }
  • 相关阅读:
    python_16(bootstrap)
    python_15(jquery)
    python_14(js)
    .net 定义泛型方法解析XML数据赋值给相应对象
    SQL Server 数字字符串位数不够补0
    SQL Server 跨服务器查询
    JQ1.5 为动态追加的元素添加事件
    radio group 的change 事件
    记录兼职工作中遇到的问题-IIS 服务器站点无法启动
    记录第一份工作的最后一次需求-百分比环形进度条
  • 原文地址:https://www.cnblogs.com/mjtcn/p/8502975.html
Copyright © 2020-2023  润新知