• HDU1695 莫比乌斯反演


    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 15981    Accepted Submission(s): 6144


    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     
    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     
    Output
    For each test case, print the number of choices. Use the format in the example.
     
    Sample Input
    2 1 3 1 5 1 1 11014 1 14409 9
     
    Sample Output
    Case 1: 9 Case 2: 736427
    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
     
    Source
    题意:gcd=k的对数
    思路:倍数莫比乌斯反演。
    代码:
     1 #include<bits/stdc++.h>
     2 #define  ll long long
     3 using namespace std;
     4 const int N = 2e5 + 5;
     5 int t;
     6 //线性筛法求莫比乌斯函数
     7 bool vis[N + 10];
     8 int pri[N + 10];
     9 int mu[N + 10];
    10 int sum[N];
    11 int a,b;
    12 void mus() {
    13     memset(vis, 0, sizeof(vis));
    14     mu[1] = 1;
    15     int tot = 0;
    16     for (int i = 2; i < N; i++) {
    17         if (!vis[i]) {
    18             pri[tot++] = i;
    19             mu[i] = -1;
    20         }
    21         for (int j = 0; j < tot && i * pri[j] < N; j++) {
    22             vis[i * pri[j]] = 1;
    23             if (i % pri[j] == 0) {
    24                 mu[i * pri[j]] = 0;
    25                 break;
    26             }
    27             else  mu[i * pri[j]] = -mu[i];
    28         }
    29     }
    30     sum[1]=1;
    31     for(int i=2;i<N;i++) sum[i]=sum[i-1]+mu[i];
    32 }
    33 int n,m,k;
    34 ll cal(int x,int y){//求[1,x],[1,y]内互质的数对
    35     int ma=min(x,y);
    36     ll ans=0;
    37     for(int i=1,j;i<=ma;i=j+1){
    38         j=min(x/(x/i),y/(y/i));
    39         if(j>=ma) j=ma;
    40         ans+=1ll*(sum[j]-sum[i-1])*(x/i)*(y/i);
    41     }
    42     return ans;
    43 }
    44 int main() {
    45     mus();
    46     scanf("%d",&t);
    47     for(int i=1;i<=t;i++){
    48         scanf("%d%d%d%d%d",&a,&n,&b,&m,&k);
    49         ll ans,res;
    50         if(!k) ans=0;
    51         else
    52         {
    53             if(n<m) swap(n,m);
    54             res=cal(m/k,m/k);//这部分除1外,算了两次
    55             ans=cal(n/k,m/k);//这部分为总的个数
    56             ans=ans-res+(res+1)/2;//最后结果
    57         }
    58         printf("Case %d: %lld
    ",i,ans);
    59     }
    60     return 0;
    61 }
  • 相关阅读:
    java 装饰者模式与继承的区别
    Java学习笔记-多线程-创建线程的方式
    java IO流复制图片
    如何解决代码重复问题
    jdbc的基本应用
    java多线程
    java中的集合和数组
    Collections的应用
    Map集合的应用及其遍历方式
    qweb
  • 原文地址:https://www.cnblogs.com/mj-liylho/p/9572455.html
Copyright © 2020-2023  润新知